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Prediction of Growth Parameters of 
Frost Deposits in Forced Convection 
Experimental investigations of frost deposition under forced convection conditions have 
shown that in most cases heat and mass transfer rates become constant after an initial 
transient period. It is shown that, in such cases, approximately half of the mass transfer 
from a humid air stream to a frost layer diffuses inward, condenses and increases the den
sity of the frost. The other half is deposited at the surface and increases the thickness of 
the layer. Approximate expressions for density and thickness of the frost layer are derived 
and compared with data from the literature and also with experimental work reported 
in this paper. The correlations are shown to work well for a broad range of experimental 
conditions. 

Introduct ion 
Frost formation in free or forced convection over a cooled surface 

has been investigated for numerous flow and deposition configurations 
including cylinders in axisymmetric and crossflow, axial tube flow, 
refrigerating coils, spheres, flat plates, cryogenic storage tanks, and 
rectangular ducts. Fifty-four early investigations of such phenomena 
are discussed in [1] and [2]. These and later studies were primarily 
concerned with heat and mass transfer in frost formation, and most 
of them made either direct or indirect inferences about the effective 
thermal conductivity of frost. Temperatures involved in these in
vestigations ran the gamut from the boiling point of liquid hydrogen 
to the triple point of water. In all cases, the effective thermal con
ductivity of frost was recognized as being strongly dependent upon 
the density and thickness of the frost layer. This makes knowledge 
of mass transfer behavior in frosting systems essential to analysis of 
the corresponding heat transfer problem. 

The task of tying the heat and mass transfer in frost together is an 
important step in approaching the point where the former can be 
calculated from only knowledge of the ambient conditions. For the 
case of "mature" frost, when the layer has been forming for approxi
mately an hour or more, the problem is somewhat simplified because 
heat transfer and condensation rates tend to become essentially 
constant after an initial transient period (e.g. [1,2]) while the thick
ness and density of the frost both increase with time. The same effects 
occur in free convection [3] and it appears that for a wide range of 
humidities and ambient temperatures the increase in thermal resis
tance caused by the thickening frost layer is nearly balanced by the 
decrease in thermal resistance caused by increasing density. 

Here we present a model of this problem in which the growth and 
densification of a frost layer is related to the overall heat and mass 
transfer to it. For the conditions of steady overall heat and mass 
transport to a constant density frost layer we show that the density 
and thickness both increase with the square root of time and that each 
accounts for about half of the total moisture condensation. Data taken 
on a cooled flat plate in forced convection exhibit reasonable agree
ment with the prediction of the model. 

G r o w t h and Dens i f i ca t i on of an E x i s t i n g Fros t L a y e r 
Consider a one-dimensional frost layer that has attained a steady 

condensation and heat transfer rates at time to- The frost surface 
temperature is found to reach a steady value at the freezing point but 
the density and thickness continue to increase. We refer to this type 
of frost behavior as quasi-steady to distinguish it from a true steady 
state problem [2]. The density and thickness at time to are given by 
Po and 5o, respectively. Assuming there are no density gradients in the 
frost, conservation of mass for the frost layer may be written as 

. dp dS 
0 h p — = 

dt dt 
(1) 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
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where gs is the vapor flux through the plane of the frost surface and, 
as described above, is a constant for given external conditions. The 
first term in equation (1) is the densification rate of the frost, and the 
second term is the condensation rate at the surface. Let the latter be 
designated as gc. Equation (1) may then be written 

i dp 
dt 

Let 0 be defined by 

: #5 - go 

gS ^gc 

gc 

(2) 

(3) 

Then dividing equation (2) by the surface condensation rate gc 

yields 

(4) 
Sdp 

pdS 
<t>. 

This can be integrated to yield 

P__ 

Po 

S 

So 
*. 

A dimensionless time r may now be defined by 

gs 
T = 

t- -t0) 

PoSo 

and then equation (5) can be used with equation (1) to yield 

S 

So 
= (1 + T ) 1 ' * * 1 

and 

• = (1 + T)*'*+1 

(5) 

(6) 

(7) 

(8) 
Po 

Now it has been demonstrated [4] that an effective thermal con
ductance can be defined for that portion of the total heat flux that 
excludes mass transfer effects. The experimental data indicate that, 
for a given driving temperature difference, this will be proportional 
to the density or, what is equivalent, to the specific gravity y of the 
frost. Then 

9 - hggs =" 
A 7 ( T j - Tw) Ape 

(Ts - Tw)(l + T)*-VI>+K (9) 
o PfSo 

Here A is a proportionality constant with the dimensions of thermal 
conductivity; q is the total heat flux; isg is the latent heat of sub
limation; and pf is the density of water. 

Therefore, for the heat flux to be constant as observed for these 
conditions it is necessary that <f> approach a value of unity, because 
Ts is constant for a constant mass transfer rate to the frost layer. The 
interpretation of this is that condensation at the surface equals dif
fusion of water vapor inward from the surface of a quasi-steady frost 
layer. Thus, for this particular case, 
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PO »0 
(10) 

It should be noted that the above analysis carries with it the impli
cation that in this quasi-steady state, half the mass of water vapor 
adds to the densification of the frost while the other half adds to the 
thickness of the frost. 

Prediction of Densities and Thicknessess Starting at 
Zero Time 

The disadvantage of the analysis presented thus far is that 
knowledge of quantites not generally known a priori from basic en
gineering information is required. Further approximations enable us 
to make predictions of thickness and density growth without reference 
values of density and thickness. 

It was noted by the authors that when mass per unit area of frost 
is plotted as a function of time, a reasonable fit for the data is a 
straight line passing through the origin. A typical result is shown in 
Fig. 1 with the severe scatter to be expected because of the difficulty 
of measurement. Similar results were noted in previous work [1]. The 
inplication is that, as a first order approximation, the quasi-steady 
mass flux can be extrapolated to zero time for the purpose of deter
mining how much mass has been deposited at any given time. 

This, in conjunction with the hypothesis that densification of frost 
accounts for half the mass added to the frost layer, suggests that an 
approximate solution for density of the frost might be given by 

P = efest)1'2 

& = -(git)m 

c 

(11) 

(12) 

where c is a constant. 
Evaluation of the constant in equations (11) and (12) cannot be 

done in the usual manner since there is no reference value available 
for either the density or thickness. However, it is possible to proceed 
further by consideration of the thermal aspects of the problem. First 
divide equation (11) by equation (12). Then c — (p/5)1'2 which can be 
evaluated from equation (9) so that 

PM ~ isggs) 
MTS - Tw)\ 

1/2 
(gst)

1/2. (13) 

In cases where concentration profiles have a minimal effect on the 
usual heat transfer coefficient, we may write 

= h(T„ - Td (14) 

where T„ is a free-stream or bulk temperature. Making this substi
tution and dividing both sides of the resulting equation by yfpsX 
where ps is the density of the ice and X is a characteristic length 
gives 

P_ 

Ps 

Also, it follows that 

&_ 

X 

ATSCTJ - TJ 

hX(T„ - T6) 

hX{T„ - Ts) 

1/2 

1/2 

git 

PsX, 

git 

[PsX, 

1/2 

1/2 

(15) 

(16) 
[ysA(Ts - Tw)\ 

The quantity hX/ysA. is essentially the ratio of the thermal con
ductance of the boundary layer to the thermal conductance of the ice 
making up the frost and so is of the form of a Biot number. This 

Fig. 1 Frost deposition as a function of time 

suggests that the characteristic length X might be the same for a fluid 
dynamics analysis, an energy transfer analysis, or for a problem in
volving frost deposition. 

Therefore, define a Biot number for frost deposition by 

BiF 
hX 

A 7s 

and a dimensionless temperature by 

Tx — T„, 

Ts 

(17) 

(18) 

Here 0; is clearly related to the insulating value of the frost, since it 
would be zero if the frost were a perfect conductor and unbounded 
if the frost were a perfect insulator. 

Define a new dimensionless time T by 

T = -
PsX 

Then equations (15) and (16) become 

and 

P_ 
Ps 

X 

Bijr. 

Bip 

1/2 

1/2 

f l /2 

T1/2. 

(19) 

(20) 

(21) 

Only [1] and [2] present sufficient data, particularly the information 
required to calculate A, for comparison with the above theory. A was 
evaluated from these data as 

A = A, Bt + ^{TS+Tw) (22) 

with the constants given by A2 = 35.4, S i = -0.0134 W/m-K, and B2 

= 0.000157 W/m-K2. This expression is developed fully by White [2]. 
The constants were empirically determined using data from the lit
erature [1] and data observed by the authors [4]. 

E x p e r i m e n t a l A p p a r a t u s 
Numerous frost deposition observations were made on a cooled flat 

plate in a rectangular duct and detailed descriptions of these and the 
equipment are given in [2]. A schematic of the test section is shown 

.Nomenclature-
h = 

t = 
T-
X 

y. 
5 = 

convective heat transfer coefficient 
mass flux density 
heat flux density 
= heat of sublimation 
time 
temperature 

= characteristic distance 
specific gravity 
frost thickness 

(18)) 
A = effective thermal conductance (equation 

(22)) 
p = density 
T = dimensionless time after reference state 

is reached (equation (6)) 
T = dimensionless time after onset of frosting 

(equation (19)) 
(j> = dimensionless ratio of densification rate 

dimensionless temperature (equation to thickening rate (equation (3)) 

Subscripts 
c = thickening of frost layer 
/ = water 
F = frost 
0 = reference state, when quasi-steady con

dition is reached 
s = ice 
w = wall 
8 = surface 
<" = ambient 
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Fig. 2 Schematic view of apparatus Fig. 3 Heat flux to wall 

in Pig. 2. A flooded aluminum evaporator was placed on top of the duct 
as shown. This placement obviated the need for internal fins in the 
evaporator. Pressure was controlled in the evaporator by use of an 
evaporator pressure regulator. The refrigerant used was Preon 12. 

Moist air was forced through the duct and past the test section by 
a draw-through centrifugal blower. Velocity profile measurements 
indicated the flow to be of entry length type with very little acceler
ation caused by boundary layer development. Reynolds numbers 
varied from laminar to transitional. 

Density was determined by coring with a sharp-edged tube of about 
1.5 mm i.d. This collects a sample of frost for which the density is 
obtained from volume and mass measurements. This was done first 
from the side to see if density gradients could be detected; however, 
none were, which agrees with the findings of previous investigations 
(e.g. [1,5,6]). Trammel, et al. [7,8] reported the existence of density 
gradients in frost formed on a flat plate in forced convection. However, 
they measured only the total mass per unit area for a known thickness 
of frost. Then assuming that there was a decreasing density in the 
direction away from the surface, they intuitively constructed a density 
distribution which agreed with the total mass measurements. Shah 
[1] has shown, theoretically, that the density should increase in the 
outward direction but could not detect this with his measurements. 
We recognize that there probably is a variation in density in the di
rection of heat flow but it is sufficiently small that, as far as our 
measurements are concerned, density is constant. The densities re
ported herein, then, come from cores taken normal to the plate with 
the assumption that the ice mass is uniformly distributed. 

Heat transfer rates at the wall were measured with a heat-flux meter 
having a calibration uncertainty of ±10 percent. Temperature dis
tributions within the frost layers were measured by thermocouples 
stretched across the duct as shown. These were not needed for this 
study but were used along with the heat-flux measurements to infer 
effective thermal conductances reported elsewhere [4]. Surface 
temperatures were measured by monitoring the thermocouples as they 
became covered with frost so that temperatures of the surface at other 
thicknesses could be obtained by interpolation. The actual temper
ature measurements were made with an uncertainty of ±0.1K. 
Thicknesses were measured by advancing a depth micrometer to the 
frost surface and subtracting the reading from the duct height. De
position rates measured by taking core samples and densities were 
calculated from mass/volume measurements. The uncertainty in these 
measurements was caused by the irregularity of the frost surface. It 
is estimated that the results reported for both thickness and density 
are reproducible to within ±15 percent at experimental times greater 
than 30 min. 

Results and Discussion 
Some typical heat-flux distributions are shown in Fig. 3. These 

results and those for the frost deposition rate in Fig. 1 substantiated 
the observations of many others (e. g. [1, 9,10]) that heat and mass 
transfer rates tend to become constant after an initial transient period. 
Periodic fluctuations were observed in heat fluxes when conditions 
were such that melting occurred at the surface. In such cases, the 

Fig. 4 Frost growth and densification—time measured from reference 
state 
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Fig. 5 Frost growth and densification—time measured from onset of 
frosting 

fluctuations were about a mean steady value. The same sort of cyclic 
behavior was reported in references [3, 7, 8,11] and [12] for both free 
and forced convection. Apparently, condensation is first from the 
vapor to the solid phase until the thermal resistance of the frost layer 
is sufficiently high that the surface temperature reaches the triple 
point temperature. Condensation then occurs to the liquid phase 
which then somewhat fills the voids causing a denser matrix with 
increased thermal conductance and a concomitant reduction in sur
face temperature. Frost then forms directly from the vapor and the 
process repeats itself. 

The prediction of density and thickness, starting with given initial 
values of these at some reference time, is given by equation (10). This 
is compared with data from [1] and [2] in Fig. 4. The predictions for 
the case of starting at zero time, given by equation (20) and (21), are 
shown in Fig. 5 along with the data from [1] and [2], In the second case, 
the characteristic length chosen for correlations of the authors' data 
was the distance from the leading edge as their surface was in a duct 
with slowly developing flow. For Shah's data [1], taken in a duct with 
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an apparently fully developed flow, the duct height was used. 
It is difficult to compare the theory developed here with data and 

other predictions from the literature. However, equations (11) and 
(12), which postulate a square root of time behavior, can be fitted quite 
well to frost thickness or density data such as those reported in [5,11, 
13,14]. 

The several theories which have been developed for frosting under 
diverse conditions all predict roughly the same kind of behavior for 
growth and densification. Basing his work on crystal growth models, 
Mehra [3] found a square-root of time dependence for the thickness 
of frost on a vertical cylinder in free-convection as did Schneider [6] 
for the case of horizontal cylinders in cross-flow. Jones and Parker 
[17], using a diffusional model found thickness distributions that have 
a time dependence not explicitly of a square-root form but which can 
be well matched with such a curve. Finally, Dietenberger, et al. [16] 
presented theoretical results based on a heat and mass transfer model 
which involves the Lewis analogy. However, the description of the 
theory is sufficiently limited that one cannot tell how the thickness 
and density explicitly vary with time. However, again, their curves 
can be well matched with ones having a square-root of time depen
dence. 

To confirm the hypothesis advanced concerning equal contributions 
of the densification and thickening, square-root of time curves were 
fitted to the experimental densities and thickness. Typical examples 
are given in [2]. These curves were then differentiated and used with 
equation (2) to test the hypothesis that densification accounts for half 
the mass deposition to a frost layer. This procedure was carried out 
for 14 experiments. The mean value of densification divided by the 
total mass transfer rate was 0.495, with a high value of 0.631 and a low 
value of 0.401. The data for the most part agreed with the hypothesis 
within two percent. As mentioned previously, the mass-transfer rates 
were found by fitting a least-squares straight line through the data 
and passing it through the origin. Differentiation yielded the mass 
transfer rate. 

Conclusion 
The hypothesis that half the mass transfer to a frost layer results 

in internal densification is a useful one which leads to reasonable 
expressions for density and thickness of frost layers as functions of 
time. Correlation of the expressions for thickness and density starting 
from zero time are good, considering the number of variables and the 
wide range of experimental conditions. The results, as they stand, can 
be used as conceptual models for the development of models for 
overall thermal conductance. However, if one wishes to directly cal

culate density or thickness, the mass transfer rate must first be cal
culated for the quasi-steady condition. This may be done with 
thickness models such as those in [2, 6, 15, 16] used along with the 
internal densification hypothesis above. 
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The Transition from Natural-
Confection-Controlled Freezing to 
Conduction-Controlled Freezing 
Experiments were performed to study the transition between freezing controlled by natu
ral convection in the liquid adjacent to a freezing interface and freezing controlled by 
heat conduction in the solidified material. The freezing took place on a cooled vertical 
tube immersed in an initially superheated liquid contained in an adiabatic-walled vessel. 
At early and intermediate times, temperature differences throughout the liquid induce 
a vigorous natural convection motion which retards freezing, but the temperature differ
ences diminish with time and natural convection ebbs. At large times, the freezing rate 
is fully controlled by heat conduction in the solidified material. The frozen specimens for 
short and intermediate freezing times are smooth-surfaced and tapered, while those for 
large times are straight-sided and have surfaces that are overlaid with a thicket of large 
discrete crystals. These characteristics correspond respectively to those of natural-con
vection-controlled freezing and conduction-controlled freezing. At early times, the mea
sured mass of the frozen material is identical to that for natural-convection-controlled 
freezing. At later times, the frozen mass tends to approach that for conduction-controlled 
freezing, but a residual deficit remains. 

Introduction 
The recent years have witnessed an upsurge of published papers 

dealing with freezing, melting, and related problems characterized 
by a moving interface. For the most part, both in textbooks and in the 
archival literature (e.g., [1-4]), conduction is assumed to be the sole 
mode of heat transport. However, in recent experimental work for 
both freezing and melting, it was demonstrated that natural convec
tion may be at least as important a transport mode as is conduc
tion. 

The present research was undertaken to provide fundamental in
formation about the roles of solid-phase conduction and liquid-phase 
natural convection in freezing. The objective of the paper is to docu
ment aspects of the freezing process which have not heretofore been 
identified or explored in the heat transfer literature. Although the 
reported freezing experiments are carried out using a specific sub
stance, the phenomena disclosed by the experiments should be op
erative for freezing in general, except, perhaps, for substances for 
which there is a density extremum in the liquid phase. 

Freezing of a liquid on a cooled surface may be classified according 
to the participating heat transfer processes. If the liquid is isothermal 
at its fusion temperature, natural convection does not occur, and the 
rate of freezing is controlled by conduction heat transfer in the so
lidified material. This mode of freezing may be termed conduction-
controlled freezing. When the temperature of the liquid is above the 
fusion value, there will be temperature nonuniformities through the 
liquid, and natural convection will generally occur [5, 6]. This gives 
rise to a convective heat transfer from the liquid to the freezing in
terface. It has been demonstrated both analytically [7] and experi
mentally [6] that the presence of natural convection can significantly 
retard the rate of freezing and ultimately terminate the freezing al
together. 

In both [6] and [7], the temperature difference across the liquid was 
maintained constant during the freezing period, with the result that 
the natural convection was also maintained at full strength. Thus, for 
example, in [6], where the liquid was contained in a vertical cylindrical 
vessel and the freezing took place on a vertical, co-axial water-cooled 
tube, the outer surface of the containment vessel was maintained at 
a constant temperature by a thermostatically controlled water 
bath. 

The maintenance of the natural convection at full strength is the 
key feature in the aforementioned ultimate suppression of freezing. 

To demonstrate this, it may be noted that the heat conducted across 
the solidified layer from the freezing interface to the cooled surface 
is mainly the sum of two contributions:1 (1) the latent heat associated 
with the phase change and (2) the heat transfer by natural convection 
from the bulk liquid to the interface. As the solidified layer grows 
thicker, its thermal resistance increases, with a resulting decrease of 
the heat conduction. When the natural convection is maintained at 
full strength, the energy balance requires that the rate of freezing must 
decrease and ultimately go to zero. Thus, the case of maintained 
natural convection represents an extreme manifestation of the effect 
of natural convection on freezing. 

Although solid-phase conduction continues to play an important 
role when natural convection acts, it is natural convection which plays 
a special role. Freezing under these conditions may, therefore, be 
termed natural-convection-controlled freezing. 

In the present research, a pattern of freezing is investigated which 
evolves progressively from natural-convection-controlled freezing 
to conduction-controlled-freezing. This evolution will be characterized 
here as a transition. 

For the transition studies, the phase-change liquid is contained in 
a vessel which is adiabatic, and the freezing process on an immersed 
cooled surface starts with the temperature of the liquid above the 
fusion value. As soon as freezing begins, natural convection is initiated 
and heat is thereby transferred from the bulk liquid to the freezing 
interface. This convection heat transfer tends to diminish the tem
perature of the liquid since the outer (adiabatic) bounding surface 
of the liquid does not permit a compensating heat addition. As a 
consequence, the natural convection diminishes in strength, but as 
long as it exists, it continues to transfer heat from the bulk liquid to 
the interface. Finally, the liquid temperature approaches that of the 
interface and natural convection ceases. Freezing continues, its rate 
being controlled by conduction in the solidified material. 

The experiments were performed for freezing on a water-cooled 
vertical tube positioned along the axis of a cylindrical containment 
vessel situated in an adiabatic environment. The phase-change me
dium was a paraffin, 99 percent pure n-eicosane, which has a melting 
temperature of 36.4° C. To provide comparisons for the transition 
freezing results, supplementary experiments were performed for 
natural-convection-controlled and conduction-controlled freezing. 

Three types of data were collected. First, since the frozen mass is 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division June 
12,1980. 

1 There may be a small contribution from the subcooiing of the solid, the 
neglect of which does not affect the essential point of the discussion. 
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directly related to the energy liberated by the freezing process, the 
frozen mass was measured as a function of time for each of the thermal 
operating conditions. Second, photographs were taken to document 
the change in the shape of the frozen specimens which occurs during 
the transition from natural-convection- to conduction-controlled 
freezing. In addition, quantitative data on the shapes of the liquid-
solid interfaces were obtained by traverses along the height of the 
frozen specimens. 

It is interesting to note that the freezing configuration studied here 
may be employed as a model of freezing about an array of vertical 
tubes situated in a phase-change medium. Such a multi-tube array 
has been considered in conceptual designs of phase-change storage 
systems. Consider the plan view of such an array as pictured in Fig. 
1. The tubes are on equilateral triangular centers. If the thermal 
conditions are identical for all tubes, then each tube is surrounded 
by a hexagonal symmetry envelope that is illustrated by the dashed 
line in the figure. The symmetry envelope is an adiabatic boundary 
across which there is no thermal communication. Thus, each tube and 
its surrounding phase-change material can be treated independently 
of the other tubes. 

A hexagon does not differ appreciably from a circle, so that the 
hexagonal adiabatic boundary of Fig. 1 may be replaced by a circular 
adiabatic boundary with little loss of accuracy. Thus, it would appear 
that a large array of vertical tubes can be modeled by a single vertical 
tube surrounded by a phase-change medium contained within an 
adiabatic-walled circular vessel. However, the modeling is imperfect 
owing to the difference between the velocity boundary condition on 
a symmetry boundary and that at the wall of a containment vessel. 
It is, however, known that the velocity distribution in a natural con
vection flow adjacent to a vertical wall rises steeply and attains its 
maximum close to the wall. Thus, if the spacing between the freezing 
interface and the wall of the containment vessel is large compared with 
the distance between the wall and the point of maximum velocity, the 
modeling should yield useful results. 

Experimental Apparatus 
The main components of the experimental apparatus included: (1) 

a containment vessel for the phase-change medium, (2) the thermal 
isolation enclosure which served as the adiabatic environment for the 
containment vessel during a data run, (3) the water-cooled tube on 
which the freezing took place, (4) a temperature-regulated pumped 
supply system for feeding water to the cooled tube and (5) a con
stant-temperature water bath for establishing the initial temperature 
of the liquid paraffin prior to a data run. Among these, the isolation 
enclosure contributed most of the uniqueness of the present experi
ments and was also the component which required the greatest effort 
in its development. 

Thermal Isolation Enclosure. There were three main criteria 
which were considered during the design of the thermal isolation 
enclosure. The first is that it be a good insulator so as to minimize heat 
transfer at the outer boundary of the containment vessel. The second 
is related to the transient that is brought about by the timewise de
crease of the liquid phase-change medium. In particular, the specific 
heat of the insulating material should be small enough so that the 
portion of the enclosure adjacent to the containment vessel can follow 
the transient without liberating significant amounts of stored energy. 
The last criterion is that the enclosure be of such type and configu
ration as to enable the containment vessel and the cooled tube to be 
inserted and positioned within the enclosure with minimum time lapse 
at the beginning of the data run, and similarly for the removal of the 
cooled tube bearing the frozen specimen at the end of the data run. 
A number of enclosure concepts were explored [8], but only the final 
design will be described here. 

Fig. 1 Typical module in an array of cooled vertical tubes situated in a liquid 
phase-change medium 

TURNBUCKLE COOLED TUBE 

CONTAINMENT 
VESSEL 

GUARD HEATER 
ASSEMBLY 

Fig. 2 The thermal isolation enclosure with the containment vessel and 
cooled tube In place 

Figure 2 shows the isolation enclosure with the containment vessel 
and the cooled tube in place. The main structural element of the en
closure was a corrugated cardboard container, 53 cm high and 40 X 
48 cm in horizontal cross section. An 18-cm dia cylindrical cavity made 
of poster board, centrally positioned in the top surface of the enclo
sure, extended downward by 38 cm into the enclosure. The enclosure 
(but not the cavity) was filled with silica aerogel powder insulation. 
Both the thermal conductivity and specific heat of the aerogel are 
about 15 percent less than those of air. 

The outer surfaces of the cardboard container were sheathed with 
0.081-cm thick aluminum panels, with heating tape wound around 
the enclosure on the outside of the sheathing. The purpose of the 
sheathing was to distribute the heat provided by the tapes, and the 
tape-sheathing assembly functioned as a guard heater. The sides, the 
top, and the bottom of the enclosure were encased by slabs of styro
foam. A centrally positioned circular aperture, 23 cm in diameter, was 
machined in the top styrofoam slab for access to the cylindrical cavity. 
A specially designed and fabricated heating unit was used to preheat 
the cavity prior to the initiation of a data run. 

Containment Vessel. As shown in Fig. 2, the containment vessel 
is positioned just above the bottom of the cavity in the thermal iso
lation enclosure during a data run. The containment vessel is an 
open-topped stainless steel cylinder, 15 cm in diameter and 18.4 cm 
high. A lip at the top of the vessel was pierced at three places around 
its circumference, 120 deg apart, and a monofilament nylon line was 
threaded through each pierced hole. As can be seen in Fig. 2, these 
lines were brought upward through the cavity and out to a turnbuc-
kle-support assembly which enabled the orientation of the contain
ment vessel to be adjusted so that its axis was vertical. 

The bottom of the containment vessel was fitted with an insulating 
disk whose function was to eliminate direct contact between the cooled 
tube and the lower wall of the containment vessel. Thermal isolation 
at the otherwise open top of the vessel was achieved with the aid of 
a styrofoam cap which rested on the lip of the vessel. The cap had a 
central aperture, 3.2 cm in diameter, to allow insertion of the cooled 

-Nomenclature. 
M = frozen mass 
AT; = inner temperature difference, 

T*-Tw 

TL(0) = initial temperature of liquid phase-
change medium 

T0 = temperature of outer surface of con
tainment vessel 

AT0 = outer temperature difference for 
natural-convection runs, T0 — T* 

ATo(0) = outer temperature difference for 
transitional runs, TL(0) - T* 

Tw = surface temperature of cooled tube 
T* = fusion temperature 
t = time 
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tube into the containment vessel with ample clearance. A fill line was 
scribed on the inner wall of the containment vessel at a position which 
resulted in frozen specimens of 11.5 cm height. 

To establish the initial temperature of the liquid phase-change 
medium, the containment vessel was positioned in a large, well-in
sulated constant-temperature water bath for a period of time prior 
to a data run. Control of the bath temperature was accomplished by 
an immersed sensing-heating-circulating unit which could maintain 
a preset temperature to better than 0.05°C. 

Cooled Tube. The freezing took place on a vertical, water-cooled 
brass tube positioned along the axis of the containment vessel. The 
tube had an outside diameter of 2.49 cm, a wall thickness of 0.33 cm, 
and was capped at its lower end. Within the tube was a second tube 
of smaller diameter which terminated just above the capped end of 
the outer tube. Chilled water from a closed-loop, pumped refrigeration 
system entered the top of the inner tube, flowed to the bottom, re
versed direction, and passed upward through the annulus between 
the tubes. 

Temperature measurements on the outer surface of the cooled tube 
were made with three thermocouples respectively positioned at lo
cations 1.3,6.4, and 11.4 cm from the bottom of the tube. Bach ther
mocouple was situated in a longitudinal groove machined into the 
surface of the tube. After the thermocouples has been installed, the 
grooves were filled with copper oxide cement, and the surface was 
finished so that no discontinuities could be detected. 

As indicated in Fig. 2, the tube was centered and positioned verti
cally by a guide assembly which also served to close the cavity and 
thermally insulate it from the surroundings. The guide assembly 
consisted of three members: two parallel styrofoam disks connected 
by a hollow styrofoam cylinder. A 2.5-cm dia centrally positioned 
aperture in each disk guided the cooled tube and supported it later
ally. 

The actual vertical alignment of the cooled tube was accomplished 
with the aid of a pair of levels attached to the upper end of the tube 
(one of these levels is shown schematically in Fig. 1). Departures from 
the vertical were corrected by inserting specially machined wooden 
wedges between the periphery of the top disk of the guide assembly 
and the adjacent styrofoam block. 

Instrumentation. All temperature measurements were made with 
specially calibrated teflon-coated 30-gage chromel and alumel wire. 
Temperatures were measured on the surface of the cooled tube, in the 
liquid phase-change medium, on the inner wall of the containment 
vessel, and on the wall of the cavity in the isolation enclosure. Ther
mocouple emfs were read to 1 jtiV with the same meter that had been 
used for the calibrations. 

The mass of the frozen specimens was measured by either of two 
balances, depending on the size of the specimen. An analytical balance 
with a smallest scale division of 0.1 mg was used for specimens with 
mass up to 200 g. Larger specimens were weighed on a double-beam 
balance which could be read to 0.1 g. 

Quantitative information on the shape of the liquid-solid interface 
was obtained by traversing a dial gage along the length of the speci
men. For this purpose, the sample was slipped over a mandrel which 
was held in the collet of a lathe, while the dial gage was affixed to the 
tool post. 

Photographs of all test specimens were taken with Tri-X film to 
provide a visual record of the change in specimen shape which ac
companied the transition from natural-convection-controlled freezing 
to conduction-controlled freezing. 

Experimental Procedure 
Prior to the initiation of a data run, three distinct preparatory tasks 

were carried out in parallel. One of the tasks was to establish the 
thermal conditions in the isolation enclosure so that the walls of the 
containment vessel and of the cavity would satisfactorily track the 
decaying temperature of the liquid phase-change medium. From 
exploratory tests, it was found appropriate to set the initial temper
ature of the cavity wall at a value midway between the fusion tem
perature and the initial temperature of the liquid phase-change me
dium, using the cavity heater described earlier. In addition, the guard 

heaters on the outside of the enclosure were set so that the tempera
ture of the aluminum sheathing was about 5.6°C below the fusion 
value. 

The thermal preparation of the enclosure was performed with the 
containment vessel and the cooled tube absent from the cavity. During 
this period, the containment vessel was situated in the constant-
temperature bath so that the liquid phase-change medium could at
tain the desired initial temperature for the data run. In addition, the 
cooled tube, placed in a support rack, was attaining thermal equilib
rium with the chilled water flow. 

When all components had achieved their desired initial tempera
tures, the cavity in the enclosure was opened, the heater removed, and 
the containment vessel transferred from the constant-temperature 
bath to the cavity. Immediately upon installation in the cavity, the 
containment vessel was leveled and the styrofoam guide assembly was 
inserted to seal the cavity. The cooled tube was then inserted through 
the guide holes and leveled, and at that point of time freezing was 
initiated. To compensate for any temperature drops during the 
transfer and installation process, the phase-change liquid had been 
preheated to a temperature about 1°C above the desired initial 
temperature for the data run. 

To terminate the run after a preselected freezing period, the guide 
assembly, the cap of the containment vessel, and the cooled tube 
bearing the frozen specimen were lifted as a unit out of the isolation 
enclosure. The subsequent separation of the frozen specimen from 
the tube was accomplished by melting, with water from the building 
supply being passed through the tube. The water temperature was 
raised slowly until the melting point was reached, at which moment 
the specimen was removed from the tube. 

As already noted, the mass and surface contour of each frozen 
specimen were measured. Prior to the contour measurements, the 
succession of specimens corresponding to different freezing periods 
for a given set of thermal boundary conditions were brought together 
and photographed as a group. 

Results and Discussion 
The freezing process is governed by two characteristic temperature 

differences. One of these is the temperature difference across the 
solidified layer, i.e., the difference between the fusion temperature 
and the temperature of the water-cooled tube. This quantity, which 
is constant during a data run, will be termed the inner temperature 
difference AT1,-. The other temperature difference, to be called the 
outer temperature difference AT0 (0), is equal to the temperature of 
the liquid phase-change medium at the start of the data run minus 
the fusion temperature. If T* and Tw respectively denote the fusion 
and wall temperatures and 7L(0) denotes the initial temperature of 
the liquid, then 

ATi = T*-Tw, ATo(0) = T L (0 ) -T* (1) 

The magnitude of AT* controls the conduction heat transfer across 
the solidified layer, whereas ATo(0) is an index of the strength of the 
natural convection during the early stages of freezing, i.e., during the 
period when natural convection exerts a strong influence on the 
freezing process. 

Three series of data runs were performed, with each series being 
characterized by fixed values of AT; and AT0 (0). One of these series 
may be regarded as a baseline case, and the other two series may be 
considered as systematic variants of the baseline case. The three series 
are defined by 

Table 1 Temperature conditions for the experiments 

Series AT; ATQ(0) 

I 27.8°C 17.8°C 
II 27.8°C 9.4°C 

III 13.9°C 17.8°C 

Relative to the baseline series I, the second series is characterized 
by a smaller value of ATo(0), which is expected to yield a lesser in
fluence of natural convection. For the third series, relative to the first, 
there is a smaller value of AT; which gives rise to an expectation of 
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generally lower freezing rates and relatively greater effects of natural 
convection. Each series encompassed from eight to ten data runs 
spanning freezing periods of 5 to 300 min. 

The presentation of results will be subdivided into three sections. 
In the first, photographic information will be presented to demon
strate the changes in the shape of the frozen specimens which ac
company the transition from natural-convection-controlled freezing 
to conduction-controlled freezing. The second part of the presentation 
conveys quantitative data on the variation of the frozen mass with 
time. In the final section, quantitative measurements of the interface 
contours are presented. 

Photographic Record of the Transition. The frozen specimens 
for each series were arranged according to increasing duration of the 
period of freezing and were photographed in this arrangement. The 
photographs for the series I, II, and III data runs are presented in Pigs. 
3, 4, and 5, respectively. The freezing periods for the succession of 
specimens in each figure are indicated in the figure caption. 

All of the figures display a common trend. Starting at short freezing 
times, the specimens are slim but already display a slight taper, with 
the thickness of the frozen layer increasing from top to bottom. With 
increasing freezing time, the specimens grow thicker and the taper 
becomes more pronounced. All specimens corresponding to small and 
intermediate freezing times are characterized by smooth surfaces, as 
is indicated by the photographs. 

As the freezing period is further prolonged, the characteristics of 
the frozen specimens begin to change. First, discrete crystals begin 
to populate the surface, and as time proceeds the crystals grow and 
form a thicket-like structure that overlays the solid surface beneath. 
In the photographs, the initial presence of the crystals is suggestive 
of a small surface roughness, but at later times the discrete crystals 
are evident. Accompanying the advent of the crystalline thicket, the 
taper diminishes so that finally the specimens are nearly straight-
sided. 

To give perspective to these results, reference may be made [6] to 
the characteristic specimen shape and surface condition that re
spectively characterize natural-convection-controlled and conduc
tion-controlled freezing. Specimens produced under natural-con
vection-controlled freezing are tapered from a narrower top to a wider 
bottom and are smooth-surfaced. The tapering results from the top-
to-bottom decrease of the natural convection heat transfer coefficient, 
the decrease being due to a thickening of the boundary layer as the 
liquid flows downward along the specimen. The natural convection 
motion also prevents the formation of large discrete crystals. In con
trast, specimens produced by conduction-controlled freezing are 
straight-sided but have an overlayment of discrete crystals. 

With this background, Figs. 3-5 offer conclusive evidence of a 
transition from natural-convection-controlled freezing to conduc
tion-controlled freezing. The transition is brought about by the de
creasing strength of the natural convection as the liquid transfers heat 
by convection to the liquid-solid interface, so that its temperature 
ultimately approaches the fusion value. Other evidences and mani
festations of the transition will be presented shortly. 

There are some interesting differences in detail among Figs. 3-5. 
Both Figs. 3 and 4 display clear attainment of the conduction regime 
(i.e., crystal thicket, straight sides), but in Fig. 4 the crystals appear 
somewhat more massive. This is consistent with the smaller value of 
ATo(0) for Fig. 4, which implies a less-strong initial natural convection 
and an earlier approach to pure conduction conditions. It can also be 
seen that the conduction regime is barely achieved in Fig. 5, even 
though the right-most specimen in that figure corresponds to a longer 
freezing period than do the right-most specimens in Figs. 3 and 4. This 
behavior is consistent with the relatively stronger natural convection 
that is implied by the thermal conditions for Fig. 5. 

Further inspection of the figures shows that the longer-time spec
imens have a somewhat downsloping top. This is due both to an in
crease in the liquid density as it cools and also to the density increase 
which accompanies phase change. 

Another feature of the larger-time specimens is an outward flare 
of the cylindrical surface adjacent to the top. This flare is caused by 
extraneous freezing brought about by slightly lower temperatures at 
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Fig. 3 Timewise evolution of the frozen layer for transitional freezing. Series 
I data runs: A 7) = 27.8°C, Ar o (0 ) = 17.8°C. Freezing times (left-to-right): 
10, 20, 30, 60, 90,120, 150,195, and 240 min 

l l l l l l l l I I I 
Fig. 4 Timewise evolution of the frozen layer for transitional freezing. Series 
II data runs: Ar , = 27.8°C, Ar„(0) = 9.4°C. Freezing times (left-to-right): 
5, 10, 20, 30, 60, 90, 120, 150, 180 and 240 min 

Fig. 5 Timewise evolution of the frozen layer for transitional freezing. Series 
III data runs: Ar , = 13.9°C, A f„ = 17.8°C. Freezing times (left-to-right): 
30, 60, 90, 120, 150, 180, 240, and 300 min 

the free surface of the paraffin—a consequence of imperfect insula
tion. 

Timewise Variation of the Frozen Mass. The amount of energy 
liberated by the freezing process is intimately related to the mass of 
the frozen material and, because of this, the mass versus time results 
are of practical interest. This information is conveyed in Figs. 6,7, and 
8, respectively for series I, II, and III. Each figure contains three sets 
of data. One set is the data (circular data symbols) for the transition 
from natural-convection-controlled to conduction-controlled freezing, 
which is the main focus of the research. 

The second set of data (square symbols) is for natural-convec
tion-controlled freezing. These experiments were performed with the 
containment vessel situated in a constant-temperature water bath 
during the entire duration of each data run, such that the natural 
convection in the liquid phase-change medium was maintained at full 
strength. The quantity AT0 which parameterizes the natural-con
vection data is 

AT0 = Ta-T* (2) 

where T0 is the temperature on the outer surface of the containment 
vessel. It may be noted that in each figure AT0 was set equal to the 
initial temperature difference ATo(0) of the transitional runs. The 
experimental arrangement for the natural convection runs was similar 
to that of [6], but the data appearing in Figs. 6-8 were collected as an 
auxiliary to the present study. 

The third set of data in Figs. 6-8 is for conduction-controlled 
freezing, which is achieved by maintaining the liquid phase-change 
material at the fusion temperature, so that ATo(0) = AT0 = 0. This 
condition was attained with the containment vessel situated in a 
constant-temperature water bath during the entire data run. The 
freezing data for conduction control yielded a remarkably simple and 
general correlation 

M = 30.1(ATit)0-634 (3) 

where M is the frozen mass in grams, AT; is the inner temperature 
difference in °C (equation (1)), and t is the freezing time in hours. This 
correlation was based on experiments covering the range of AT; from 
5.6 to 27.8°C. The solid lines (without data symbols) that appear in 
Figs. 6-8 are representations of equation (3). The relationship between 
equation (3) and theoretical predictions for conduction-controlled 
freezing is shown in Fig. 4 of [9] (note the adjustment in the multi
plicative constant to accommodate the different specimen heights 
of the present investigation and [9]). From that figure, it may be ob
served that the slope of the correlation equation (3) and that of the 
predictions of theory are in excellent agreement, but the predictions 
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Fig. 6 Timewise variation of the frozen mass for Series I transitional freezing 
and for natural-convection-controlled and conduction-controlled freezing 
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Fig. 7 Timewise variations of the frozen mass for Series II transitional freezing 
and for natural-convection-controlled and conduction-controlled freezing 

lie about 20 percent below the data. The probable causes of these 
deviations are identified in [9]. 

The results presented in Pigs. 6-8 display common trends, but with 
important differences in detail. In all cases, pure conduction-con
trolled freezing yields the largest mass of frozen material. The con
duction freezing curve rises steeply at first and continues to rise with 
the passing of time, but at a slower rate due to the increasing thermal 
resistance of the frozen layer. In contrast, the curve for natural-con
vection-controlled freezing becomes horizontal after an initial rise, 
indicating the complete termination of freezing. 

At small freezing times, the data for transitional freezing are 
coincident with those for natural-convection-controlled freezing. 
Then, the transitional data tend to break away, soaring upward as 
freezing accelerates due to the diminishing strength of the natural 
convection that results from the temperature decrease of the liquid. 
Later, as the natural convection becomes a negligible factor and the 
additional conductive resistance of new solidified layers asserts itself, 
the rate of freezing tends to decrease. The earlier acceleration of 
freezing due to the ebbing of the natural convection and the later 
deceleration due to increased conduction resistance yields an inflected 
mass versus time curve for transitional freezing. 

The gap between the transitional-freezing and conduction-freezing 
curves tends to close with increasing time. As can be seen from Figs. 
6-8, the extent of the remaining gap at any time is dependent on the 
size of the mass deficit which must be made up. 

Figures 6-8 show that the highly negative impact of maintained 
natural convection on freezing is substantially moderated when the 
freezing is carried out in an adiabatic containment vessel such that 
the natural convection ebbs with time. However, even for the adia-
batic-walled vessel, there is a residual deficit in the amount of frozen 
mass relative to that for pure conduction. Thus, the pure conduction 
case provides an upper limit for the frozen mass. 
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Fig. 8 Timewise variations of the frozen mass for Series III transitional 
freezing and for natural-convection-controlled and conduction-controlled 
freezing 
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Fig. 9 Comparison of the frozen masses for Series i, II, and III transitional 
freezing 

The results of Figs. 6-8 verify the expectations that were expressed 
earlier about the relative importance of natural convection in the three 
series of experiments. Relative to the baseline series I, the lower value 
of ATo(0) for series II implies a lesser influence of natural convection, 
as is evidenced by the relatively small gap between the conduction 
and transitional curves. For series III, the lower value of AT; and the 
common value of AT0 (0) suggests a greater natural convection effect, 
and this asserts itself in greater percentage differences between the 
conduction and transitional curves. 

The merging of the transitional and natural-convection data at 
small times lends confidence to the experimental technique. The two 
sets of data were obtained in different apparatus and with a different 
experimental technique (and also involved different personnel in the 
execution of the experiments). In this light, the agreement of the data 
is a highly affirmative outcome. 

A comparison of the transitional freezing results for the three sets 
of thermal conditions is made in Fig. 9, where mass versus time curves 
are presented without the corresponding data points. Series I and II 
have the same inner temperature difference AT;, but the AT0 (0) value 
is larger for the former. As a result of the larger AT0 (0), there is more 
natural-convection-related retardation at early times. Thus, a mass 
deficit between series I and II is established, and this difference per
sists throughout the range of freezing times that were investigated, 
even though the percentage difference diminishes. 

For series III, the main factor which contributes to the reduction 
of the frozen mass, relative to series I, is the halving of AT,-, but there 
is also an important influence of natural convection. At small and 
intermediate times, the ratio of masses for series III and I is about a 
half, and at larger times the ratio is only slightly greater than a half. 
Since the corresponding ratio is 0.707 for pure conduction-controlled 
freezing (equation (3)), the lower ratio for transitional freezing rep
resents an important effect of early and intermediate-time natural 
convection which persists to larger times. 
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Evolution of the Liquid-Solid Interface. The shape of the liq
uid-solid interface was measured for each of the frozen specimens.2 

For each series, the progression of interface contours corresponding 
to successively longer freezing periods have been plotted on a single 
graph to display the evolution of the interface. To illustrate the results, 
one of the three available graphs will be presented here (a complete 
presentation is available in [8]). The series III results were collected 
at more regular time intervals than were the other series and have, 
therefore, been selected for presentation in this paper. 

Figure 10 displays the succession of interface contours for the series 
III runs, where the thickness of the frozen layer is plotted against the 
axial coordinate for each run. The first six runs were taken at 30 min 
intervals, while the last two runs are at a 1 hr interval. 

The first of the contours (30 min) already displays the tapered 
bottom-heavy shape that is characteristic of strong natural convection 
effects. The top-to-bottom flare becomes somewhat greater for the 
next two contours, as can be verified by comparing the spacing be
tween successive contours at positions near the top and the bottom 
of the specimens. This trend signals the continued viability of the 
natural convection. 

Then, thereafter, the layer growth is such that the taper is dimin
ished, i.e., the successive contours are more closely spaced at the 
bottom than at the top. This signals the ebbing of the natural con
vection and the increasing dominance of conduction. When conduc
tion controls, the thinner portions of the specimen add new frozen 
material more rapidly than do the thicker portions. The final contour, 
at 300 min, has only a slight taper. 

The dashed line at the top of the graph is an approximate repre
sentation of the upper surface of the specimen. The overall configu
ration of a frozen specimen at a given instant of time may be obtained 
by extrapolating the interface contour upward until it intersects the 
dashed line. An outward flare is seen to develop near the top of the 
interface contour. As noted earlier, this flare is the result of extraneous 
freezing at the free surface of the paraffin. 

C o n c l u d i n g R e m a r k s 
The experiments performed here have demonstrated the nature 

of the transition between natural-convection-controlled freezing to 
conduction-controlled freezing. The freezing took place on a vertical, 
water-cooled tube immersed in a liquid phase-change medium con
tained in an externally adiabatic vessel. In the early stages of freezing, 
the liquid superheat (relative to the fusion temperature) induces a 
vigorous natural convection recirculation, with a corresponding re
tardation of freezing. The superheat diminishes with time as a result 
of convective heat transfer from the liquid to the freezing interface 
(the adiabatic containment vessel precludes heat addition to com
pensate for the heat loss to the interface). As natural convection ebbs 
due to the diminished temperature differences in the liquid, the rate 
of freezing tends to accelerate. At still later times, the rate of freezing 
decelerates owing to the added conductive resistance of the new layers 
of frozen material. 

At short and intermediate freezing times, the frozen specimens are 
smooth-surfaced and are tapered, increasing in thickness from top 
to bottom. At large times, the specimens are straight-sided, with 
surfaces that are overlaid with a thicket of large discrete crystals. 
These characteristics are respectively those of natural-convection-
controlled freezing and conduction-controlled freezing. 

The timewise variation of the mass of frozen material reflects the 
transition process. At early times, the mass for transitional freezing 
is identical to that for natural-convection-controlled freezing. At later 
times, the frozen mass tends to approach toward that for pure con
duction-controlled freezing, but a residual deficit remains. In general, 
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Fig. 10 Evolution of the contour of the liquid-solid interface for Series III 
transitional freezing 

conduction-controlled freezing produces a greater mass of frozen 
material than do the other modes of freezing. 

The phenomena identified here, although determined via experi
ments involving a specific phase-change substance, should be oper
ative for freezing in general, except, perhaps, for substances which 
exhibit a density extremum in the liquid phase. 
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Melting of a Vertical Ice Wail by 
Free Confection into Fresh Water 
A steady-state two-dimensional finite difference analysis is presented for the heat and 
momentum transfer resulting when the leading portion of a semi-infinite vertical ice sheet 
at 0°C melts into fresh water by natural convection. Fluid properties are assumed to be 
constant and are evaluated beyond the edges of the boundary layers with the exception 
of fluid density which varies with the local temperature. Results of the analysis are pre
sented for free stream temperatures from 0 to 24.0°C. They include streamlines, velocity 
profiles, melt velocities, and average Nusselt numbers for the leading 0.7632 m portion 
of a semi-infinite ice sheet. Overall, the results show three distinct flow regimes: steady 
upward flow for T«, < 4.50°C, steady downward flow for T„ > 6.0°C and steady dual or 
bi-directional flow for 5.70 < T„ < 6.0° C. In the range 4.50° C < T„ < 5.70° C the solution 
failed to converge and since the method is capable of accounting for local recirculations, 
it is suggested that this flow regime may be transitory in nature. 

Introduction 
If a vertical isothermal solid boundary is in contact with a sur

rounding real fluid which is at a temperature different from that of 
the wall, a steady-state fluid motion will occur near the wall. If the 
fluid density either increases or decreases monotonically with in
creasing temperature, such free convection flows are amenable to 
boundary layer analyses such as can be found in many introductory 
heat transfer texts. In many engineering applications, free convective 
heat transfer phenomena occur with fluids which may exhibit density 
extrema. For example, environmentally exposed vertical surfaces may 
be in contact with fresh water which exhibits a density extremum at 
approximately 4.0° C at atmospheric pressure. If the wall and fluid 
temperatures lie on alternate sides of the temperature at which the 
density extremum occurs, a simple boundary layer analysis is not 
directly applicable. Through one portion of the thermal boundary 
layer the buoyancy forces will be upwards, but through the other 
portion such forces will be downwards, and a complicated flow 
structure may result. If a vertical ice surface is in contact with water, 
analysis is further complicated by the melting or fusion process which 
occurs at the ice-water interface. While the melting or fusion process 
can be approximated by applying a blowing or suction boundary 
condition at the interface, the density extremum distribution ne
cessitates a further extension of such analyses. 

As far as is known, the first analytical solution concerned with the 
effect of the density maximum on natural convection was achieved 
by Merk [1], who considered heat transfer between a melting sphere 
of ice and adjacent pure water by using the integral momentum 
method. He predicted that in the neighborhood of T„ = 5°C, the 
Nusselt number has a minimum and the direction of the flow changes 
from upward at lower temperatures to downward at higher temper
atures. Further, he found that the effect of melting is only appreciable 
for T» greater than the inversion temperature and may be neglected 
for T„ less than the inversion temperature. Ede [2] compared his 
experimental results for heat transfer from a heated vertical iso
thermal wall to cold pure water with the predictions made by Merk 
and found them to be in reasonable agreement except in the region 
of low Nusselt number. 

Dumore, et al. [3] demonstrated experimentally for melting ice 
spheres that a convective inversion occurs at 4.8°C. Their results in
dicate that the flow is upward when T„ < 4.8°C and downward when 
T„ > 4.8° C. A minimum Nusselt number at 5.5° C was obtained by 
Tkachev [4] in his experimental work with vertical melting ice cyl
inders. Both experiments and analysis on natural convection heat 
transfer in regions of maximum fluid density have been carried out 
by Schechter and Isbin [5]. They substantiated the findings of Du-
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more, Merk, and Prins that there is a bidirectional flow in the 
boundary later when heat is transferred from a vertical isothermal 
flat plate to cold water. 

Vanier and Tien [6] studied the influence of density inversion and 
melting on natural convection heat transfer from vertical surfaces for 
various wall and bulk temperature combinations. Their numerical 
boundary layer analysis indicated that for the case of Tw = 0°C a dual 
flow exists near the wall and for 4.75°C < T„ < 6°C no solution was 
found. The effect of melting on the heat transfer rate was found to be 
small. 

Schenk and Schenkels [7] measured natural convection heat 
transfer for an ice sphere in water for T„ from 0 to 10° C and found 
that a dual flow exists in the range 4°C < T„ < 6°C. In this compli
cated region, they observed upward flow near the wall and downward 
flow at some distance away from the wall. Vanier and Tien [8] also 
performed experiments with ice spheres melting in water from 0 to 
20°C and obtained a convective inversion at 5.35°C. The problem of 
natural convection heat transfer to a horizontal ice cylinder immersed 
in water was studied both theoretically and experimentally by Takeo 
Saitoh [9]. A minimum Nusselt number at above T„ = 6°C was ob
tained. 

Bendell and Gebhart [10] carried out experiments with vertical 
melting ice sheets in pure water at various values of T„. The experi
mentally determined heat-transfer results were found to be in good 
agreement with that from the boundary layer calculations of Gebhart 
and Mollendorf [11]. For the experimental investigation, a minimum 
Nusselt number in the range, 2.2°C < T„ < 25.2°C, was found to 
occur at T„ = 5.6°C. Meanwhile a net upflow and a net downflow were 
deduced from fluid temperature measurements when To= < 5.6° C and 
T„ > 5.6° C respectively. In reference [11] numerical solutions were 
not obtainable in the range 4.0°C < T„ < 6.8°C because of the first 
order boundary layer approximations. Similar analyses based on [10] 
were made by Qureshi and Gebhart [12] for a vertical ice plate with 
a uniform flux condition in water. Carey, et al. [13] reported numerical 
results for laminar thermal natural convection to or from a vertical 
isothermal surface in cold water when a density extremum arises. In 
pure water at atmospheric pressure, they found the flow is bidirec
tional for T«, between 4.75°C and 5.98°C and that convective inver
sion occurs at some T„, between 4.75°C and 5.81°C. Solutions could 
not be obtained within this range of temperatures. 

Wilson and Vyas [14] conducted experiments on the velocity pro
files near a vertical ice surface melting into fresh water for 2°C < Too 
< 7°C. Their results indicated steady-state motion upward when the 
water temperature is below 4.7°C and downward when the water 
temperature is above 7°C. For intermediate temperatures oscillatory 
bidirectional flow was observed. 

The experimental work of Josberger [15] provides considerable 
information about the complex flow behavior near a vertical ice sur
face melting in saline water. 
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In view of the above summary, the scope of the present work can 
be defined. The analysis should be capable of yielding results for 
unidirectional upflow, unidirectional downflow, or bidirectional flow. 
Since steady bidirectional flow would imply that steady recirculation 
exists within the fluid adjacent to the ice sheet, the analytical model 
should be capable of readily accounting for such recirculations in 
steady-state flows. 

Analysis 
If all fluid properties remain constant with the exception of density 

in the body force terms, the following equations describe the steady 
state laminar two dimensional transfer of momentum and energy 

dx\ dy) dy\ dxj ( d2u d2W 
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In writing the above equations, Cartesian co-ordinate systems as 
shown in Figs. 1(a) and 1(6) have been attached to the melt interface. 
Thus for dominant upward flow, the gravitational force on a fluid 
element would be in the negative x direction and the —pg term ex
pressed in equation (1) would apply. If the dominant flow direction 
is downward, the co-ordinate system of Fig. 1(6) is employed along 
with the +pg term in equation (1). 

The approach of Lafond [16] was used to define an equation of state 
relating density to temperature. 

In order to complete the analysis, the associated boundary condi
tions should be considered. At the leading edge of the ice sheet, that 
is at the bottom of the plate for upflow or the top of the plate for 
downflow, the fluid is assumed to have no velocity in the direction 
along the plate. However, the fluid could be flowing in a direction 
normal to and towards the ice surface. If this is the case, the fluid 
would be flowing with zero shear stress and with a temperature equal 
to the value far removed from the wall. Thus, at * = 0 (except for y 
= 0) 

a) = 0, \p = 0, T = T„ 

Far removed from the wall, the fluid is at T„ and possesses a zero u 
component of velocity. In addition, du/dy is assumed to be zero and 
dyldx is assumed to be small enough to be negligible. Thus for large 

y 

d\p d2\p 

dy <9y2 

Along the ice surface, the u -component of velocity is zero, but because 
of melting, the v -component is non-zero. Heat conduction into the 
ice is neglected for simplicity. (This corresponds to assuming that the 
ice is at its fusion temperature throughout). Therefore, the heat 
transferred to the ice by conduction through the fluid immediately 

P<i P<3 

Fig. 1(a) Coordinate system 
for dominant upflow 

Fig. 1(b) Coordinate 
for dominant downflow 

system 

adjacent to the ice can be equated, in the steady state, to the heat 
required to melt the ice. Thus, the local v -component of velocity at 
the wall can be expressed as 

(7) 
pL (9y y=o 

Hence, if the temperature profile were known, the stream function 
could be evaluated along the ice sheet from 

-£ pvwdx (8) 

If the analysis were based upon boundary layer equations, the 
boundary conditions described so far would be sufficient to describe 
the flow near the leading portion of the plate. That is, boundary 
conditions would then need to be specified only at the leading edge, 
at the ice surface and far removed in the direction normal to the plate. 
However, if a fully two-dimensional solution is to be found, boundary 
conditions must be specified at the downstream end. This requires 
that the flow geometry be carefully identified. 

A finite leading portion of a long vertical ice sheet is considered. 
It is assumed that the ice sheet is immersed in water with all other 
solid boundaries far removed from the ice surface, and that the ice 
sheet is much longer than the leading portion over which a solution 
will be found. This implies that the length of the region of interest of 
the plate may be arbitrarily chosen provided the x -direction gradients 
of a), I/*, T, and p are not varying too appreciably at that point. Then 
the closure boundary values for these variables can be found by linear 
extrapolation from the interior of the region of interest. 

The above equations were cast in finite difference form using the 
techniques described by Gosman, et al. [17]. That is, central differ
ences were employed for all terms in equations (1-3) except the con
vection terms which were modelled by upwind differences. The fluid 
properties with the exception of density were evaluated at T„ and a 
computer program was written in Fortran IV. Typical runs required 
between 400 and 800 iterations. Complete details of the finite dif
ferences formulation and the computer program are given in reference 
[18]. 

R e s u l t s and D i s c u s s i o n 
The work of Gosman, et al. is known to yield valid results for an 

appropriate grid and suitable boundary conditions. A nonlinear 25 
by 41 node grid was utilized for 0 < x < 0.7632 m and 0 < y < 0.175 
m for all of the results presented here with the nodes most closely 
spaced near the leading edge in the x direction and near the ice surface 
in the y direction. Details of the grid are included in reference [18]. 

- N o m e n c l a t u r e . . 

Cp = constant pressure specific heat, 
(kg°C) 

g = acceleration of gravity, m/s2 

k = thermal conductivity, W/(m°C) 
£ = length of plate, m 
L = heat of fusion, J/kg 

31 Nuf = average Nusselt number 
Pr = Prandtl number 
T = local temperature of fluid, °C 
To, = bulk temperature of fluid, °C 
Tw = temperature of plate, °C 
u,u = velocities in x and y directions, m/s 

uw = melt velocity, m/s 
x,y = cartesian co-ordinates, m 
p = local density of fluid, kg/m3 

p. = dynamic viscosity, kg/(m s) 
\p = stream function, kg/(m s) 
oo = vbrticity, s _ 1 
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Various tests were devised to validate the grid. For example, a solution 
was obtained for the above grid and compared by drawing streamline 
maps to the solution for the same grid in the * direction but with twice 
as many nodes at half the original spacings in the y direction. Dis-
cernable differences could not be found between the two solutions, 
and therefore, the 41 node y -direction grid spacing was validated. A 
similar technique established the sufficiency of the 25 node x -direc
tion grid spacing. 

The effect of the extrapolative boundary condition at the down
stream end of the plate was numerically investigated by extending 
the original 25 by 41 node grid to a 51 by 41 node grid for 0 < x < 1.731 
m and 0 < y < 0.175 m. The 51 by 41 node grid was identical to the 
25 by 41 node grid for the first 25 nodes in the x -direction. Beyond 
there, the extra nodes merely extended the region over which a solu
tion was found from x = 0.7632 m to x = 1.731 m. Over the first 25 
x -direction nodes, the two solutions yielded identical streamline 
contours as is shown in reference [18]. Thus, changing the location 
of application of the extrapolative closure boundary condition did not 
noticeably affect the solution upstream from this location. Therefore, 
it was concluded that this boundary condition may be employed. 

Streamline patterns were drawn for representative temperatures 
for a portion of the flow field from the ice wall to y = 0.02 m. Inspec
tion of Fig. 2(a), for example, shows that for T„ = 0.5°C fluid is en
trained towards the ice surface most strongly near the lower end of 
the plate and then essentially pumped upward by the buoyancy forces. 
Although not shown here, at increased free stream temperatures below 
2.5°C, the streamlines were more closely crowded together over the 
whole of the flow field. This corresponds to a more vigorous entrain-
ment and pumping action. For 2.50 < T„ < 4.50°C, increasing T«, 
resulted in lessening of the x and y gradients of stream function be
cause of the lowered buoyancy forces in the outer portion of the 
boundary layer. 

For 4.50 < T„ < 5.70°C, converged solutions could not be obtained 
for either upflow or downflow. The program was run for up to 1500 
iterations, and the results either oscillated from iteration to iteration 
or overflow errors occurred. Various grid configurations and degrees 
of under-relaxation were employed to obviate this difficulty but all 
attempts were unsuccessful. In general, two-dimensional finite dif
ference schemes such as the present work can oscillate for steady-state 
flow conditions if the grid or the boundary conditions are insufficient 
to describe the phenomena, or if the flow field itself is truly oscillatory. 
The present analysis is capable of describing steady-state recircula
tions as is discussed below pertaining to Fig. 2(b). The temperature 
range through which the present solution was nonconvergent corre
sponds approximately to that in which the analysis of Bendell and 
Gebhart fails to obtain solutions. It also corresponds to the range in 
which the experimental data of Wilson and Vyas showed continual 
oscillations in the velocity distributions near a melting ice wall. 
Therefore, it is speculated that if 4.50 < T„ < 5.70°C the flow is os
cillatory in nature. Obviously, further work is required to fully in
vestigate this range of temperature. 

For Too = 5.70°C, a solution could be found with the streamline 
patterns as shown in Fig. 2(6). Because of the high free stream tem-
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perature, the fluid far from the ice wall is significantly lighter than 
that near the wall. Therefore, the fluid near the wall flows generally 
downwards. In the region very close to the wall (y < 0.003 m) the fluid 
density increases with increasing y resulting in a localized region of 
upflow. Hence the \[/ = —0.002 and —0.001 streamlines show upflow 
near the wall, and a turning point followed by downflow further from 
the wall. The sharpness of the turning point in these streamlines is 
partially attributable to the algorithm used for producing the 
streamline contours from the stream function data available at the 
nodes. (Linear interpolations were used over a rectangle enclosed by 
four adjacent nodes and in order to more adequately describe this 
turning point with the contouring program an excessively fine grid 
would be required). 

As Too was increased beyond 5.70°C the near wall upflowing region 
became comparatively weaker because of the increased viscous action 
in the downflowing region. For T«, > 6.00°C upflow was not ob
served. 

Typical velocity profiles at selected positions along the ice surface 
are shown for selected temperatures in Figs. 3(a) and 3(6). For T„ < 
4.50°C the velocity profiles are wholly upward flowing with both the 
maximum longitudinal velocity and the boundary layer thickness 
increasing for increasing distances along the plate. For T„ = 5.70°C 
the dominant flow direction is downwards with a small region near 
the wall possessing upwards velocities. Both the local velocity maxima 
and the recirculating boundary layer thickness increase with in
creasing distance along the plate. As the value of T« is increased be
yond 5.70°C the upwards flowing portion of the boundary layer pro
gressively decreases in magnitude and thickness until it almost dis
appears at r « = 6.0°C as is shown in Fig. 3(6). 

In Fig. 4 the calculated velocity profiles at selected locations along 
the plate for Too = 2.0° C are compared with the experimental data 
of Wilson and Vyas at x = 0.05 m. The analysis appears to predict 
velocities which are too large at x = 0.05 m when compared with the 
data, but the calculated values for x •= 0.0212 m compare favorably. 
This anomaly could be attributed to the use of constant fluid viscosity 
in the present work or to the fact that the work of Wilson and Vyas 
was conducted within the confines of a small tank. 

The melt velocity distributions {v at y = 0) along the ice surfaces 
are summarized in Fig. 5. Generally, for each of the ranges 0 < T„ < 
4.50 and Too 5: 5.73°C the melt velocity is highest towards the leading 
edge of the plate and decreases with increasing x. Also for each range, 
the melt velocity increases with increasing T„. At T„ = 5.70°C when 
recirculation is present, the melt velocity is lower than at T=, = 4.5°C 
over the full length of the plate with this reduction being most en
hanced near the leading edge. 
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Local heat transfer coefficients may be determined by equating the 
heat required to melt the ice, pvwL, to the heat transferred by con
vection, -h (Tw - T„) . Thus 

h = _pu!sL_ 
T„-Tw 

In many applications the mean heat transfer coefficient, h, over a 
length, £, of a plate is of interest. It is determined from 

- 1 r£ 

h=- i h 
£ Jo 

dx 

If the above integration is performed numerically the average Nusselt 
number, Nu^, can then be calculated from 

XT K £ 

k 

Figure 6 shows the average Nusselt number as a function of T„ for 
the present analysis in comparison with experimental data and pre
vious analyses corrected to a plate length of 0.7632 m as suggested by 
Bendall and Gebhart. In general the present analysis predicts some
what higher average heat transfer than the work of either Vanier and 
Tien or Gebhart and Mollendorf. Because of its ability to account for 
recirculation near the melt interface, the present work provides in
formation for downflow for T_ > 5.70°C in comparison to T„ > 6.8°C 
as found by reference [11]. 
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Fig. 6 Average Nusselt numbers for a 0.7632 m vertical plate 

C o n c l u s i o n s 
The two-dimensional finite difference analysis has predicted the 

laminar flow and heat transfer characteristics for a vertical ice sheet 
at 0°C melting into fresh water by free convection under steady state 
conditions. The results show three distinct flow regimes: dominant 
upward flow, dominant downward flow and a dual flow regime. The 
analysis does not yield stable results for 4.50°C <T„< 5.70°C and 
it is suggested that further work, possibly in the form of a transient 
analysis is necessary in this range. For 5.70° C < T» < 6.00° C a no
ticeable upflow occurs near the ice surface, and substantially decreases 
the average heat transfer rates. 

At T„ = 2.0° C the analysis predicts velocities somewhat higher 
than the experimental data of Wilson and Vyas at x = 0.05 m. The 
predicted profiles for x = 0.0212 m agree well with the data. The 
calculated overall heat transfer results are about 10 percent higher 
than the data of Bendell and Gebhart. 
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Analytically Determined Fin-Tip 
Heat Transfer Coefficients 
An analysis was performed to determine the fin-tip heat transfer coefficients for an array 
of straight longitudinal fins attached to a plane wall. The array is shrouded by an adia-
batic surface positioned adjacent to the tips, with a clearance gap between the shroud and 
the tips. The analysis was carried out for hydrodynamically and thermally developed con
ditions and for laminar flow. Results were obtained from numerical solutions of the mo
mentum and energy conservation equations for the fluid and the energy equation for the 
fin, with two-dimensional conduction being permitted in the fin. From the solution, the 
average fin-tip heat transfer coefficient was evaluated and compared with the average 
coefficient for a segment of the principal face of the fin that is adjacent to the tip, the seg
ment length being half the tip width. These coefficients were found not to differ too great
ly, with the largest deviations being on the order of twenty-five percent. When convective 
heat transfer at the fin tip was suppressed, the heat transfer coefficients on the tip-adja
cent portion of the principal face increased markedly. Because of this compensating ef
fect, the overall performance of the fin is about the same when the tip is either convective-
ly active or adiabatic. In general, large variations of the fin heat transfer coefficient were 
encountered between the base and the tip, with the smallest values at the base and the 
largest values at the tip. 

Introduction 
In the analysis of fins, the treatment of the heat transfer at the fin 

tip is a matter of uncertainty and, perhaps, of misconception. This 
is especially true when the tip is of finite thickness. There are at least 
four models which are variously employed in the representation of 
the tip heat transfer. These will now be briefly reviewed with a view 
to motivating the present work. 

One of the models, the simplest one, assumes that the tip is insu
lated. Real fins rarely, if ever, have insulated tips, but a fin which 
bridges between two walls may experience a thermal symmetry con
dition which can be construed as equivalent to an insulated tip. In the 
second model, the tip is assumed to have the same convective heat 
transfer coefficient as that on the principal faces of the fin. A third 
model shifts the fin-tip area to the principal faces where it is assumed 
to have the same convection coefficient as the remainder of the 
principal faces. The fourth model, sometimes described as being the 
most exact, acknowledges that the tip heat transfer coefficient is 
different from that of the principal faces. In all models, the heat 
transfer coefficients are assumed to be spatially uniform on the re
spective surfaces. 

Whereas the use of a distinct heat transfer coefficient for the tip 
(i.e., distinct from that of the principal faces) appears to provide the 
most accurate representation of the heat transfer process, the realities 
of the present state of knowledge suggest that such an approach is 
little more than window dressing. A literature survey did not succeed 
in identifying any available information on the tip heat transfer 
coefficient. Furthermore, the prospects of accurately measuring the 
tip coefficient are even less promising than those of measuring the 
coefficients on the principal surfaces; the latter measurement has 
rarely been performed [1] and then with somewhat uncertain results. 
Computation appears to hold greater promise than does experiment 
as a vehicle for providing fin-tip heat transfer coefficients but, up to 
the present, computationally determined tip coefficients have not yet 
been reported. 

The present paper appears to be the initial study aimed at deter
mining fin-tip heat transfer coefficients by computation. The system 
selected for study is an array of longitudinal fins attached to a plane 
wall. To prevent the heat transfer fluid from bypassing the fins, a 
shroud consisting of a plane adiabatic surface is positioned adjacent 

to the tips of the fins. The physical situation is shown in schematic 
cross sectional view in Fig. 1 along with dimensional notation and 
coordinates. 

The case to be considered here is that where the flow is laminar and 
hydrodynamically fully developed. For this condition, lateral veloc
ities are absent, but the axial velocity w depends upon the cross sec
tional coordinates in a complex manner because of the geometrical 
complexities of the flow cross section. 

A number of thermal boundary conditions can be considered. The 
one selected here is that of a uniform heat input to the fluid per unit 
axial length (but the local heat flux per unit area is not uniform). This 
yields a thermally developed regime where all temperatures, both that 
of the primary heat transfer surface and of the fin, increase linearly 
in the axial direction (i.e., in the z direction). The primary surface is 
regarded as being highly conducting and/or sufficiently thick so that 
its temperature in any cross section is uniform. On the other hand, 
the fins have finite thermal conductivity. In any cross section, the 
temperature distribution in any typical fin can vary both with x and 
y, the extent of the variation depending on the interplay between 
conduction within the fin and convection on its surface. 

The essential feature of the present analysis is that heat transfer 
coefficients are not specified in advance. Rather, the governing con-
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Fig. 1 Schematic cross-sectional view of longitudinal fin array 
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servation equations for both the velocity and the temperature fields 
are solved without reference to the heat transfer coefficients. Local 
and average heat transfer rates and temperature distributions are 
determined from these solutions and, with this information, heat 
transfer coefficients are evaluated. 

From an examination of Fig. 1, it can be seen that the geometrical 
configuration of the problem is specified by the values of four di
mensions: the fin height H and thickness t, the interfin center-to-
center spacing S, and the clearance C between the fin tips and the 
shroud. These quantities can be combined into three dimensionless 
ratios 

S/H, t/H, C/H (1) 

An additional parameter is the ratio of the thermal conductivities of 
the fin and the fluid, respectively kf and k. In selecting values of the 
kf/k ratio, the thermal conductivity of the fluid was taken to be ap
proximately that of air (because of the high probability of its use as 
a heat transfer fluid in a finned system). The kf values that were 
considered encompassed the range of the metals commonly used in 
the fabrication of fins. These estimates led to the selection of the range 
1000 5 kf/k < 10,000 as being physically realistic. 

In addition to the solutions corresponding to convective heat 
transfer on all faces of the fin, an auxiliary set of solutions was ob
tained for the case where the fin tip is adiabatic. The results from the 
two sets of solutions (i.e., convective tip versus insulated tip) were 
compared in order to provide perspectives about certain approximate 
practices that are employed in the classical approach to the analysis 
of fins. 

What with four independent parameters and two sets of fin-tip heat 
transfer conditions, a complete exploration of the ranges of all the 
parameters is prohibitive both from the computational and reportorial 
standpoints. In view of this, the computations were performed for a 
carefully selected set of typical cases in order to display the effects 
of the parameters. 

The results are presented both in tabular and in graphical form. 
The tables convey a variety of heat transfer results. These include 
average fin-tip heat transfer coefficients and average coefficients for 
the adjacent portion of a principal face of the fin. Average heat 
transfer rates for the tip and for the principal faces are also tabulated, 
as is the dimensionless temperature difference between the primary 
heat transfer surface (i.e., the base surface) and the fluid bulk. Also 
listed are the overall fin base-to-tip temperature differences. Certain 
fluid-flow-related results are also presented in tabular form. The 
graphs convey distributions of the local heat transfer coefficient, with 
special emphasis on the tip and on the adjacent portion of a principal 
face. 

The present work bears a superficial relationship to the analysis 
of [2], which dealt with a shrouded longitudinal array of zero-thickness 
fins. The zero-thickness model used in [2] precluded consideration 
of fin-tip heat transfer, which is the main focus of the present work. 
Furthermore, since the present analysis deals with fins of finite 
thickness, the computer program and solution methodology developed 
in [2] is not applicable here. 

Analys i s and S o l u t i o n 
To begin the analysis, dimensionless variables will be introduced 

X = x/H, Y = y/H, W = w/(H2/ti)(-dp/dz) (2) 

6 = (T - Tw)/(Q'/k) (3) 

In the 0 definition, the quantity Q' is the rate at which heat is supplied 
to the flowing fluid per unit axial length in the typical module 
bounded by the symmetry lines in Fig. 1. In addition, Tw denotes the 
uniform wall temperature of the primary heat transfer surface (i.e., 
the base surface) at a typical cross section in the thermally developed 
regime. 

With these definitions, the momentum conservation equation for 
hydrodynamically developed flow takes the form 

d2W/ZX2 + d2W/Z>Y2 + 1 = 0 (4) 

With regard to energy conservation, there are two forms, one for the 
fluid and one for the fin. For the fluid, the condition of thermally 
developed flow yields 

i)Tb/dz = dT/dz = Q'/pwAcp (5) 

in which A denotes the free flow area in a typical module. As can be 
seen in Fig. 1, the free flow area is an irregular domain which takes 
an abrupt jog and broadens out to a width S/2 just above the fin. Also, 
it may be noted that 

Aim = y2(i + C/H)(S/H) - y2(T/H) (6) 

With dT/dz replaced via (5), the dimensionless fully developed energy 
equation for the fluid becomes 

d26/dX2 + d20/dY2 = (W/W)/(A/H2) (7) 

In this equation, the dimensionless mean velocity W is defined as 

W= C WdA/ CdA (8) 
'A I xJ A 

In the fin, the heat transfer is governed by Laplace's equation, 

Nnmrnf lnturr 
A = free flow area per module 
C = clearance gap, Fig. 1 
cp = specific heat 
Dh = hydraulic diameter 
/ = friction factor, equation (29) 
H = fin height, Fig. 1 
h-t = average fin-tip heat transfer coefficient, 
_ equation (18) 
hta = average heat transfer coefficient for 

tip-adjacent portion of principal face, 
equation (23) 

hf = local principal-face heat transfer coef
ficient, equation (25) 

ht = local fin-tip heat transfer coefficient, 
equation (25) 

h = fictive spatially uniform heat transfer 
coefficient 

k = fluid thermal conductivity 
kf = fin thermal conductivity 
^i.i-2 = lengths between surface-adjacent 

grid points and fin surface 
m ~ dimensional group, (2h/k/t)1/2 

rh = mass flow rate per module 
rhif = mass flow rate in interfin space per 

module 
Nuj =• average fin-tip Nusselt number, 

equation (24) 
Nufa = average tip-adjacent Nusselt number, 

equation (24) 
Nu/ = local principal-face Nusselt number, 

equation (26) 
Nut = local fin-tip Nusselt number, equation 

(26) 
p = pressure 
Q' = heat transfer rate per unit axial length, 

per module 
Re = Reynolds number, wDh/v 
S = spacing between fin centers, Fig. 1 
T = temperature 
Tb = fluid bulk temperature 
Tf = local temperature at fin surface 
Tt = local tip temperature 
Tw = temperature of primary heat transfer 

surface 

t = fin thickness, Fig. 1 
W = dimensionless axial velocity, equation 

(2) 
w = axial velocity 
w = mean axial velocity 
X,Y = dimensionless coordinates, x/H, 

y/H 
x,y = cross-sectional coordinates 
y' = coordinate, y — (H — t/2) 
z = axial coordinate 
T^ = dimensionless thermal conductivity 
I1,, = dimensionless viscosity 
f] = fin efficiency 
6 = dimensionless temperature, 

(T-Tw)/(Q'/k) 
6b = dimensionless bulk temperature, 

(Tb - TJ/(Q'/k) 
8t = dimensionless tip temperature, 

(Tt - Tw)l(Q'/k) 
ix = viscosity 
v = kinematic viscosity 
p = density 
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which becomes, in dimensionless terms, 

(k,/k)(d20/HX2 + d20/dY2) = 0 (9) 

The factor kf/k may, of course, be discarded without in any way af
fecting equation (9). It has, however, been retained because its pres
ence facilitates the numerical solution scheme to be described 
shortly. 

Although the boundary conditions may be stated in formal math
ematical terms, such a statement is not of direct utility here because 
of the special techniques that were used to numerically implement 
the boundary conditions. Therefore, for the present, an informal 
statement of the boundary conditions will suffice. For the velocity 
problem, W is zero on all solid surfaces, while dW/dX = 0 on the 
symmetry lines. For the temperature, 0 = 0 all along the primary heat 
transfer surface (i.e., the base surface), while dd/dX = 0 on the 
symmetry lines and dd/dY = 0 on the shroud. In addition, the tem
perature and the heat flux are continuous at each point on the fin-fluid 
interface (i.e., at the exposed surfaces of the fin). 

Attention may now be turned to the methodology used to obtain 
the numerical solutions. The idea underlying the approach is to treat 
both the free flow area and the fin as a single unified solution domain, 
rather than as two separate solution domains. This obviates the need 
to overtly impose matching conditions for the temperature and heat 
flux at the interface between the domains because the matching occurs 
automatically. 

The unified domain is defined by the closed boundary abcdefa in 
Fig. 2. It is characterized by nonuniform thermophysical properties, 
as will now be described. 

For the velocity problem, imagine that the terms (Z>2W/dX2 + 
d2W/Y2) in equation (4) are multiplied by a dimensionless viscosity 
r „ . Then, 

In bcdDb: I\, = «° (10a) 

In abDdefa: 1 (10b) 

It may be noted that equation (lOo) characterizes the fin as a sub
stance having an infinite viscosity, while (10b) restores equation (4) 
to its original form. 

The finite-difference grid is laid out so that the interface dDb be
tween the two sub-domains defined by equations (10a) and (10b) is 
the locus of interfaces between the control volumes situated on either 
side of the interface. Consider a pair of such interfacing control vol
umes, each with a grid point centered in it. Let Li be the perpendicular 
distance from one grid point to the interface and L2 be the perpen
dicular distance from the other grid point to the interface, and let the 
viscosities at these points be fi\ and n2. Then, the viscosity /t* at the 
interface may be evaluated as [3] 

L1/(L1 + L2) | UI(U + L2) 
Ml M2 

In terms of the F,, values of equations (10) 

Y* = (Ll+L2)/L2 

(11) 

(12) 

where L\ corresponds to an interface-adjacent control volume in 
bcdDb and L2 to the mating interface-adjacent control volume in 
abDdefa. 

The description of the velocity problem for the unified domain is 
completed by the statement of the boundary conditions 

On abc and ef: W = 0 

On cde and af: d W/dX = 0 

(13a) 

(13b) 

Note that no conditions are stated (nor need be stated) on the inter
face dDb. What with equation (10a) and the boundary conditions (13), 
the numerical solution yields W = 0 in bcdDb. Other numerical as
pects of the solutions will be discussed shortly. 

The solution methodology for the heat transfer problem will now 
be described. Consider first a generalized energy equation which is 
to be applied throughout the entire solution domain abcdefa 

i 
h-

ADJACENT 
TO TIP (to) 

Fig. 2 Diagrams related to the solution methodology (left) and to the defi
nition of the tip-adjacent segment (right) 

where Tfe = 1 in abDdefa and Tk = kf/k in bcdDb. As already noted, 
the numerical solution yields W = 0 in bcdDb. Consequently, equation 
(14) respectively reduces to equations (7) and (9) in the two subdo-
mains. 

Along the interface dDb, a dimensionless thermal conductivity Tk* 
can be defined in a manner analogous to the definition of n* in 
equation (11) 

1 = W t L x + Lj) i L2/(LX + L2) 

r^* r*i I'M 
(15) 

If Tki is associated with kf/k and T^2 is set equal to one, the di
mensionless interface conductivity follows as 

rk*=(L1+L2)/(L1(k/kf)+L2 (16) 

The quantities Li and L2 are the respective distances from the in
terface-adjacent points in the subdomains bcdDb and abDdefa to the 
interface. 

The thermal boundary conditions to be used with equation (14) 

On abc: 0 = 0 

On cde and fa: d0/dX = O 

On ef: d0/dY = 0 

(17a) 

(17b) 

(17c) 

rk(d
28/dX2 + d20/dY2) = (W/W)(A/H2) (14) 

In view of the single-domain formulation, matching conditions along 
dDb are not required. 

As noted earlier, a supplemental set of solutions was obtained for 
the case in which the fin tip dD is insulated. For this boundary con
dition, the interface thermal conductivity F^* was set equal to zero 
at the tip. 

The finite-difference scheme used to obtain solutions of the gov
erning equations was a simplified version of that set forth in [3], the 
simplifications being possible because both of the participating dif
ferential equations are Poisson-type equations. Approximately 1700 
points were used in the finite-difference grid. High concentrations 
of points were deployed along the interface bDd, especially in the 
neighborhood of the tip dD. Within the fin itself, either five or seven 
grid points were used across the span of the half thickness, respectively 
for t/H = 0.01 and t/H = 0.1. In this connection, it is relevant to note 
that the temperature was found to be remarkably uniform across the 
thickness of the fin. The quantitative extent of the slight nonunifor-
mities will be presented later. 

The solutions of the governing equations were obtained iteratively, 
the velocity being solved first and then the temperature. For con
vergence, it was required that at all grid points, the changes between 
consecutive iterations be less than 10~6 relative to the current 
value. 

Results and Discussion 
The heat transfer results will be reported in terms of an assortment 

of average and local quantities, with the average results being pre
sented first and the local results thereafter. An average heat transfer 
coefficient ht for the fin tip was defined as 

20 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ht = (Qt/AtMTt - Tb) (18) 

If note is taken of the symmetry around the y-axis (Fig. 1), then 

J-»t/2 
qtdx (19a) 

o 

J»f/2 
Ttdx (196) 

o 

these Nusselt numbers. Furthermore, to enable direct comparisons 
of h values for fins of different thickness, the characteristic dimension 
should not involve the thickness. For these reasons, the fin height H 
was employed in defining Nu. Thus, 

Nu t = htHIk, Nu,0 = htoWk (24) 

where qt and Tt are local quantities (i.e., functions of x) at the tip. 
Furthermore, the bulk temperature was evaluated from 

Tb = C TwdA/C wdA (20) 

where, as before, A denotes the free flow area. Equations (19) and (20) 
were rephrased in terms of the variables of the analysis prior to their 
numerical evaluation. 

To provide perspective about the magnitude of ht, an average heat 
transfer coefficient was also evaluated for a segment of the principal 
face situated immediately adjacent to the tip. This segment (one on 
each principal face of the fin) is pictured in the right-hand diagram 
of Fig. 2, where it is designated as the tip-adjacent (ta) segment. As 
shown there, the segment length is t/2, which corresponds to half of 
the tip surface.1 

For the tip-adjacent segment 

J-.1/2 
qtady' (21a) 

o 
_ / * t / 2 

Tta = (2/t) j Ttady> (216) 
Jo 

where 

and, with these, 
y' = y-(H- t/2) 

hta = (QtJAta)/(Tta ~ Tb) 

(22) 

(23) 

To convey the values of ht and hta in a dimensionless format, 
Nusselt numbers Nu ( and Nu t a may be introduced. In order that 
comparisons between Nut and Nut„ truly reflect a comparison of ht 

and hta, the same characteristic dimensions should be used in both 

1 Each half of the tip surface can be thought of as being compared with a 
tip-adjacent segment on each principal face. 

Other average heat transfer information will be conveyed via the 
ratios Q't/Q', Q'f/Q', and Q'w/Q', where the prime indicates heat 
transfer per unit axial length. Among these, Q't, Q'f, and Q'w represent 
the heat transfer rates per module at the tip, at a principal face, and 
at the primary surface. All of these quantities were obtained by in
tegration over the respective surfaces. 

Local coefficients for the tip and for a principal face were deter
mined from 

ht = qtl(Tt - Tb), hf = q,l(Tf - Tb) (25) 

with corresponding Nusselt numbers 

Nut = htHlk, Nu/ = hfH/k (26) 

where qt and Tt are local x -dependent tip quantities, and q/ and T/ 
are local y -dependent quantities on a principal face. 

Information about the temperature field will be reported in terms 
of two dimensionless quantities. One of these, db = (Tb — Tw)/(Q'/k), 
pertains to the temperature difference between the primary heat 
transfer surface and the fluid bulk. The other, dj&b = (Tt ~ Tw)l(Tb 

— Tw), compares the temperature drop from the fin base to the fin 
tip with the drop from the base to the fluid bulk. 

Quantities related to the velocity field will be defined when those 
results are presented. 

Average Heat Transfer Results. The average heat transfer re
sults are presented in Table 1. The table is subdivided into two parts, 
with results for long and/or thin fins appearing in part (a) and results 
for shorter and/or thicker fins in part (b). Values of t/H equal to 0.01 
and 0.1 have been respectively selected to represent these two classes 
of fins. In addition to t/H, the table lists the values of four other 
quantities which parameterize the results. These include the di
mensionless spacing ratio S/H, which was assigned values of 0.1 and 
0.5 to represent close and intermediate fin spacing; the dimensionless 
gap clearance C/H, with assigned values of 0.1 and 0.25; and the 
conductivity ratio kf/k, equal to 103 and 104. Note that the cases t/H 
= 0.1 and S/H =0 .1 are not compatible, and this accounts for the fact 
that part (b) of the table is shorter than part (a). 

The fourth column of the table, headed tip, describes the thermal 

Table 1 Average heat transfer characteristics 
(a) t/H =0.01 

S/H C/H kf/k Tip Nu, Nut, Q't/Q' Q'f/Q' Q't+f/Q' 't/06 mH 

0.1 

0.1 

0.5 

0.5 

0.5 

0.5 

0.1 

0.25 

0.1 

0.25 

0.1 

0.25 

103 

104 

103 

104 

103 

104 

103 

104 

103 

104 

103 

104 

c 
/ 
c / 
c / 
c I 

c I 

c I 

c I 

c I 

c 
I 

c I 

c I 

c / 

770 

247 

41.0 
— 

40.4 
— 

42.9 
— 

32.2 
— 

77.8 
— 

60.1 
— 

9.19 
— 
8.90 
— 

23.9 
— 

23.2 
— 

612 
898 
197 
333 

30.6 
54.3 
30.2 
53.6 
36.5 
60.8 
27.4 
45.7 
66.9 

108 
51.8 
83.6 

12.8 
19.4 
12.4 
18.8 
21.6 
34.5 
21.0 
33.7 

0.0577 
— 

0.0579 
— 

0.207 

0.207 

0.0163 
— 

0.0170 
— 

0.0350 
— 

0.0360 
— 

0.922 
0.980 
0.929 
0.987 
0.781 
0.987 
0.788 
0.995 
0.848 
0.865 
0.883 
0.900 
0.849 
0.884 
0.885 
0.921 

(b) t/H =0.1 
0.0395 

— 
0.0397 

— 
0.117 

— 
0.117 

— 

0.883 
0.923 
0.887 
0.926 
0.824 
0.941 
0.827 
0.944 

0.980 
0.980 
0.987 
0.987 
0.988 
0.987 
0.995 
0.995 
0.864 
0.865 
0.900 
0.900 
0.884 
0.884 
0.921 
0.921 

0.923 
0.923 
0.927 
0.926 
0.941 
0.941 
0.944 
0.944 

0.135 
0.139 
0.059 
0.063 
1.18 
1.22 
1.04 
1.09 
0.177 
0.178 
0.116 
0.116 
0.206 
0.207 
0.132 
0.134 

0.097 
0.098 
0.090 
0.092 
0.110 
0.124 
0.102 
0.115 

0.890 
0.865 
0.205 
0.193 
0.144 
0.138 
0.016 
0.016 
0.571 
0.570 
0.091 
0.091 
0.564 
0.559 
0.092 
0.090 

0.111 
0.109 
0.012 
0.012 
0.115 
0.102 
0.013 
0.011 

1.58 
1.54 
0.611 
0.591 
0.420 
0.413 
0.138 
0.136 
1.18 
1.18 
0.403 
0.404 
1.08 
1.08 
0.382 
0.379 

0.440 
0.448 
0.141 
0.142 
0.416 
0.400 
0.133 
0.128 

0.580 
0.591 
0.891 
0.898 
0.945 
0.947 
0.994 
0.994 
0.700 
0.702 
0.949 
0.949 
0.733 
0.735 
0.954 
0.955 

0.934 
0.938 
0.993 
0.993 
0.941 
0.950 
0.994 
0.995 
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boundary condition at the tip. An entry C in this column indicates 
convective heat transfer, while an entry / indicates a perfectly insu
lated tip. All told, Table 1 contains 24 cases. 

The fifth and sixth columns of the table convey the average coef
ficients for the tip and the tip-adjacent portion of the principal face, 
while the next three columns give heat transfer rates per unit axial 
length and per module (see Figs. 1 and 2) at the tip (t)> at the principal 
face (/), and at the sum of the two (t + / ) . The next two columns 
convey temperature information, whereas the last two columns relate 
to a fin model based on a spatially uniform heat transfer coeffi
cient. 

Attention will first be focused on the comparison between the av
erage heat transfer coefficients for the tip and for the tip-adjacent 
portion of a principal face. From an overall examination of the Nu t 

and Nuio columns of Table 1, it can be seen that for any given case, 
the tip and tip-adjacent coefficients are not very different—surely 
less different than what might have been pessimistically conjectured 
in the past, when no information was available. For the thin fins, the 
tip coefficients are consistently higher than those for the tip-adjacent 
region, the differences being in the 15 to 25 percent range. In the case 
of the thicker fins, the relationship between the coefficients is less 
regular, with a slightly larger range of deviations. These findings apply 
for both of the investigated kf/k ratios; indeed, for a given geometry, 
NU(a/Nui has identical values for kf/k = 103 and 104, even though 
Nu(„ and Nu t are individually affected by kf/k. 

The foregoing observations suggest that in the absence of specific 
information about a particular case of interest (i.e., defined by the 
geometric parameters and kf/k), it would not be unreasonable to use 
equal values of the heat transfer coefficients for the tip and the tip-
adjacent regions. 

Attention may now be directed to the response of the tip-adjacent 
region and of the fin as a whole to the imposition of an adiabatic 
boundary condition at the fin tip. Examination of the NU(„ column 
of Table 1 shows that the heat transfer coefficient in the tip-adjacent 
region increases when the tip is insulated and that the increase is 
approximately sixty percent for all of the cases investigated (both for 
the thin fins and the thicker fins). Thus, it appears that nature acts 
to compensate for the loss of heat transfer surface at the fin tip by 
bringing about an increase in the heat transfer coefficient along the 
tip-adjacent region. 

The degree of perfection of this compensation can be judged by 
comparing the respective values of Q't+f for the cases of the convective 
and insulated tips, for otherwise identical operating conditions. Such 
a comparison yields virtually identical values, with the largest de
viations (confined to a few isolated cases) being one in the third sig
nificant figure. Furthermore, in assessing the comparison, it should 
be noted that there are certain cases where the fin tip, when it is 
convectively active, carries a substantial heat load (up to 20 percent 
of Q'). Even in these cases, where there is substantial redirection of 
the heat flow when the tip is deactivated, the compensation is per
fect. 

Another indicator of the degree of compensation is the value of — db 
= (Tw — Tb)/(Q'/k). This quantity can be regarded as a measure of 
the thermal resistance of the system. In general, —db is very little 
different for fins with either active or inactive tips. 

Thus, left to her own devices, nature yields more or less identical 
performances for fins with either active or inactive tips. A rather 
different result would, however, be forthcoming from fin analyses of 
the type that are currently standard. The difficulty with those ana
lytical models is that they employ identical input values of the heat 
transfer coefficient for both active- and inactive-tipped fins. This 
assumption is, however, not valid, and corresponding comparisons 
of active- and inactive-tipped fins such as are often made in textbooks 
are of uncertain validity. The root cause of the difficulty goes beyond 
the models themselves. Fundamentally, the problem lies in the ab
sence of reliable information for the fin heat transfer coefficient. This 
theme will be revisited in another context shortly. 

The foregoing discussion (relating to the comparisons of Nu ( and 
Nu t a and to the effects of insulating the tip) conveys the main message 
of Table 1. There are a variety of lesser issues that may be addressed, 

and a few of these will now be briefly considered. First, it may be noted 
that the tabulated Nusselt numbers are generally lower at larger 
values of kf/k, although the effect is of little significance for the thicker 
fins. This trend may be rationalized by thinking of increases in kf/k 
as being due to an increase in the fin conductivity kf at a fixed value 
of the fluid conductivity k. For a fin of fixed dimensions, an increase 
in thermal conductivity gives rise to increases of both the heat transfer 
rate and the surface-to-bulk temperature difference in the tip region. 
The latter increase outweighs the former, with the result that the local 
heat transfer coefficient is decreased. 

With regard to the magnitudes of Nu4 and Nu t a , it can be seen that 
higher values prevail for thin fins than for thicker fins. This rela
tionship can be explained by the same reasoning as was employed for 
the kf/k effect. For the thin fins, there are startlingly high Nusselt 
number values in evidence for certain cases. These values are pri
marily due to the relatively small temperature differences that prevail 
(see, for example, the 6 columns of the Table). 

Also of interest is the trend of the overall thermal resistance (i.e., 
of —8b) with the clearance parameter C/H. At a fixed interfin spacing 
S/H, the thermal resistance increases as the clearance gap increases. 
This trend is especially marked when the spacing is small. It is caused 
by the tendency of the fluid to seek the path of least resistance. For 
a small interfin spacing, more fluid tends to prefer the clearance gap 
as a passageway as the gap increases. As a consequence, there is very 
little convective heat transfer in the interfin space, and this results 
in a large overall thermal resistance. The last two columns of Table 
1 will be discussed later. 

Local Heat Transfer Results. Distributions of the local heat 
transfer coefficient along the principal face of the fin and along the 
tip are presented in Figs. 3-8. Each figure consists of a main part and 
an inset. The main part contains the distribution curves for the local 
coefficients on the tip and on the portion of the principal face adjacent 
to the tip. The tip coefficients Nu ( span the range 0 < x < t/2, while 
the face coefficients Nu/ are extended over Q < y' < t/2 (recall that 
y' = y — (H — t/2)). For Nu/, curves are given for both the cases of the 
convectively active tip and the adiabatic tip. 

As plotted, the curves in the main part of the figure are for kf/k = 
104. These curves also represent the results for kf/k = 103 in accor
dance with the relation 

Nu/(104) = [NU(a(104)/Nn to(103)]Nu/(103) (27) 

That is, the local coefficients in the tip-adjacent region scale precisely 
with the ratio of the average values. As a demonstration of this rela
tionship, "data points" are plotted in Fig. 8 which represent Nu/ re
sults for kf/k = 103 that have been so scaled. It can be seen that the 
points fall precisely on the curves for kf/k = 104. The same type of 
relationship applies for Nu t . 

At the right-hand margin of the main part of the figure there is an 
array of three horizontal lines. These lines respectively correspond 
to the Nu ( and Nu(„ values that are listed in Table 1. Each line is of 
a type which indicates its correspondence with the distribution curves 
shown in the figure. 

The inset that appears at the upper left of each figure contains Nu/ 
distributions along the entire height of the fin from y = 0 to y = H. 
These results are presented in a graph of lesser size because it is felt 
that with regard to the main objectives of the work, they are of lesser 
novelty than the fin tip results. In each inset, it was intended to plot 
four curves, respectively for kf/k = 103 and 104 and for the cases of 
the convectively active tip and the adiabatic tip. The curve designa
tions for these various cases are indicated in the inset of Fig. 3. In some 
of the insets, fewer than four curves are plotted because overlapping 
among the curves prevented their resolution within the scale of the 
graph. 

Attention may first be turned to the main parts of Figs. 3-8, i.e., 
to Nut and to Nu/ in the tip-adjacent region of the principal face. In 
all cases, it is seen that the maximum value of the transfer coefficient 
occurs at the corner where the tip meets the principal face. Indeed, 
both Nuj and Nu/ experience sharp rises in the neighborhood of the 
corner. Although it is very difficult to resolve events at the corner 
point with complete certainty, it appears that Nu/ may increase faster 
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than Nu ( and, therefore, attain higher values. Away from the corner 
(but still near the corner), it can be seen that for the most part Nu ( 

> N i y . 
The response of Nu/ to the deactivation of heat transfer at the fin 

tip is quite striking. As the corner is approached, Nu/ soars and takes 
on values that are much, much higher than those for the case of the 
convectively active tip. It is these elevated values of Nu t that com
pensate for the loss of heat transfer surface area when the tip is 
deactivated. Away from the immediate neighborhood of the corner, 
the differences between the Nuj values for the active and inactive tip 
cases subside. 

Attention may be turned to the insets of Figs. 3-8, where base-to-tip 
distributions of the fin face heat transfer coefficient are presented. 
The main message of these distributions is the fact of the enormous 
variation of the heat transfer coefficient along the fin. The general 
pattern of the variation includes a rapid rise near the fin base, the 
attainment of a plateau (either flat or gently rising) which extends 
over most of the fin height, and an extremely sharp increase near the 
fin tip. That the coefficient varies along the fin is not an altogether 
new finding since other investigators have demonstrated the existence 
of such variations. Rather, the special significance of the present re
sults is that they stem from a more complete model of fin heat transfer 
(finite fin thickness and conductivity, active tip) than that of previ
ously published work. 

On the other hand, it is worth calling attention to the profound 
disparity between the variations of the heat transfer coefficient evi
denced in Figs. 3-8 and the constant value of the coefficient that is 
used in conventional analyses. In addition to quantitative errors, the 
assumption of a constant coefficient can also lead to erroneous 
qualitative conclusions such as, for instance, that the rate of fin heat 
loss is a maximum near the base and a minimum near the tip. 

There are certain trends in the insets that are worthy of note. In 
general, higher heat transfer coefficients are stimulated in the base-
adjacent portion of the fin by larger kf/k ratios, while an opposite 
trend prevails nearer the tip. Furthermore, although deactivating the 
tip gives rise to larger h; values near the tip, lower hf values are in 
evidence away from the tip in certain cases. 

Before concluding the discussion of the local results, mention may 
be made of the variation of the temperature across the thickness of 
the fin. For reporting these results, let Acs denote the temperature 
difference between the centerline of the fin and its surface, both at 
the same value of y; in addition, let As<, denote the surface-to-fluid 
bulk temperature difference. For kf/k = 103, it was found that Acs/Ast 
~ KT3 , while for kflk = 104, the values of Acs/Asb ~ 10"4. These ratios 
are impressively small. They indicate that the temperature variations 
across the fin were negligible for the cases that were investigated. 

Relation to the Conventional Fin Model. As was noted in the 
Introduction, conventional fin models are based on the assumption 
that the heat transfer coefficient is uniform on all the thermally active 
surfaces of the fin. Although the foregoing presentation has demon
strated that this assumption is not valid, it is still of interest to seek 
some way to relate the present results to those of the conventional 
model. The approach used here to relate the two sets of results will 
now be described. 

In the conventional model, a naturally occurring dimensionless 
group for a rectangular fin of thickness t and height H is 

mH, m = (2fi/kft)
1'2 (28) 

where h denotes the fictiue spatially uniform heat transfer coefficient. 
Since, in reality, K does not exist (i.e., the heat transfer coefficient is 
not spatially uniform), it cannot be calculated directly. Here, fi (or, 
rather, its dimensionless counterpart mH) will be calculated indirectly 
by the following procedure: 

1 For a fin that is thermally active at the tip as well as at its 
principal faces, the formula for the fin heat transfer rate as given by 
the conventional model is equated on a case-by-case basis to the heat 
transfer rates listed in Table 1 (i.e., for the C cases). When this op
eration is carried out in dimensionless form, the only unknown is the 
quantity mH defined by equation (28), and it can, therefore, be de
termined. 

2 A similar procedure is followed for the case where the tip is 
perfectly insulated. For this case, the literature formula for the heat 
transfer rate for an insulated-tip fin is equated to the heat transfer 
rates for the / cases of Table 1. 

The aformentioned formulas for the conventional model are found 
in numerous textbooks and need not be repeated here. Once the mH 
values were determined, they were employed to evaluate the fin ef
ficiency r\ from the standard formulas of the conventional model. The 
resulting values of mH and rj are listed in the last two columns of 
Table 1. 

In appraising the trends in the values of mH, it should be noted that 
k/ and t are involved in the definition of m in addition to H, and their 
presence influences the numerical values of mH. Thus, the mH for 
kf/k = 103 are larger than those for kf/k = 104 by a factor approxi
mating the square root of ten. Similarly, the values of mH for t/H = 
0.1 are lower than those for t/H = 0.01 by approximately the same 
factor. If these factors are taken into account, it appears that h~ does 
not vary appreciably from case to case among those listed in Table 
1, with the exception of the case S/H = 0.1 and C/H = 0.25. The low 
fi values for that case reflect the fact that most of the fluid flows 
through the clearance gap rather than in the interfin space. 

The 7) values display a logical pattern. It is well established that 
increasing departures of T) from unity are indicative of larger tem
perature variations along the fin. Thus, larger T) should be correlated 
with smaller values of 0t/0&, and smaller r\ should correspond to larger 
dtldb- Table 1 shows that these expectations are fulfilled. 

As a final note, it can be seen that both mH and rj are little affected 
by whether the tip is thermally active or inactive. 

Fluid Flow Characteristics. Results will now be presented for 
two quantities which relate to the velocity field. One of these is the 
friction factor /, which was evaluated according to the standard def
inition 

/ = (-dp/dz)Dh/y2pw2 (29) 

where D/, is the conventional hydraulic diameter. Friction factors are 
listed in Table 2 in terms of the group /Re, in which 

Re = WDh/v (30) 

The numerical values of /Re in Table 2 are not very regular with 
regard to trend. This is because the value of/Re not only reflects the 
pressure gradient but also the magnitude of the hydraulic diameter. 
Thus, for a given spacing, the pressure gradient decreases (for a fixed 
w) as the clearance increases while the hydraulic diameter increases. 
The conflict between these opposing tendencies leads to the afore
mentioned irregular behavior. 

The other tabulated velocity-related quantity is the mass flow ratio 
rhif/m. In this ratio, m;/ is the rate of mass flow through the interfin 
space (i.e., 0 < y < H) while m is the total mass flow through a module. 
The table shows that for a given spacing S/H, the mass flow through* 
the interfin space decreases as the clearance increases. This trend 
reflects the tendency of the flow to seek the path of least resistance. 
The shift of the flow from the interfin space to the clearance is most 
evident at small spacings. 

C o n c l u d i n g R e m a r k s 
In the present study, the heat transfer characteristics at the tip and 

at the principal faces of a fin have been determined without a priori 
specification of the heat transfer coefficient—as is conventional. 
Rather, the momentum conservation equation for the fluid and the 

Table 2 Fluid flow characteristics 

C/H 

0.1 
0.25 
0.1 
0.25 
0.1 
0.25 

/Re 

89.21 
45.09 
71.37 
81.37 
70.80 
84.21 

rhif/m 

0.815 
0.287 
0.964 
0.814 
0.957 
0.772 
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energy equations for the fluid and the solid have been solved nu
merically by finite differences. 

The average fin-tip heat transfer coefficient was evaluated and 
compared with the average coefficient for a segment of the principal 
face adjacent to the tip, the segment length being equal to half the tip 
width. These coefficients were found not to differ too greatly in 
magnitude, with largest deviations on the order of 25 percent. For the 
most part, the tip coefficients are higher than those on the tip-adjacent 
principal face. These deviations are smaller than what might have 
been conjectured in the past, when there was no quantitative infor
mation available. On the basis of the present findings, it seems rea
sonable to use equal values of the tip and tip-adjacent coefficients for 
those cases where there is no quantitative information about their 
differences. 

When convective heat transfer at the tip was suppressed, the heat 
transfer coefficients on the tip-adjacent portion of the principal face 
increased markedly, thereby compensating for the loss of the tip 
surface area. The overall performance of the fin was found to be about 
the same when the tip was either convectively active or adiabatic. On 
the other hand, assessment of different tip conditions by conventional 
models yields findings at variance with that found here because those 
models use the same input values of the heat transfer coefficient for 
the different tip conditions. 

The highest local heat transfer coefficient in the system occurs at 
the corner where the tip and principal face intersect, while the lowest 
coefficient is at the fin base. The variation between base and tip in
cludes a rapid rise near the base, the attainment of a plateau which 
extends over most of the fin height, and an extremely sharp rise near 
the tip. This is to be contrasted with the uniform heat transfer coef
ficient that is assumed to prevail in the conventional model. 

Higher values of kf/k provide higher heat transfer coefficients in 
the base-adjacent portion of the fin but lower coefficients nearer the 
tip. 
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An Iterative Boundary Integral 
Numerical Solution for General 
Steady Heat Conduction Problems 
An iterative boundary integral numerical method for solving the steady conduction of 
heat is developed. The method is general for two- and three-dimensional regions with ar
bitrary boundary shapes. The development is generalized to include the first, second, and 
third kind of boundary conditions and also radiative boundary and temperature-space 
dependent convective coefficient cases. With Kirchhoff's transformation, cases of temper
ature-dependent thermal conductivity with general boundary conditions are also ac
counted for by the present method. A variety of problems are analyzed with this method 
and their solutions are compared to those obtained analytically. A comparison between 
the present method and the finite difference predictions is also investigated for a case of 
mixed temperature and convective boundary conditions. Moreover, two-dimensional re
gions with three kinds of boundary conditions and irregular-shaped boundaries are used 
to illustrate the versatility of the technique as a computational procedure. 

Introduction 
Integral methods for formulating field governing equations have 

been a subject of interest to many investigators for several years. Some 
exact and approximate solutions for these integral equations, de
pending on the specifics of each problem, were obtained [1, 2]. A 
fundamental method employed in the classical potential theory is the 
use of Green's functions for solving the integral equation associated 
with the Laplace equation [2]. In spite of the generality of this method, 
it is limited to those problems of simple geometries and boundary 
conditions. These limitations are due to the mathematical complexity 
of constructing the required Green's functions for obtaining the so
lution to the integral equation. A modified version of the method, 
based on the use of Green's functions together with Green's second 
formula, has been found to be more practical and less complex [3-5]. 
The basic idea of this modified version is to cast the field differential 
equation into a boundary integral equation. The method, which has 
become popular in recent years, is called the boundary integral 
equation method (BIE) in the solid mechanics literature [5-7]. This 
popularity is the result of the use of numerical schemes for solving the 
integral equations. 

In many aspects, the BIE technique for solving boundary value 
problems proves to be advantageous over the conventional numerical 
methods of finite difference and finite elements. Since the technique 
uses only the boundary data in the solution, this in turn reduces the 
size of the numerical calculations. In addition, the solution at any 
interior point is easily obtained with a high resolution and without 
further involvement of the other points. Furthermore, the method 
does not require any modifications or special handling of points near 
the domain boundaries, unlike the case of the finite differences. This 
particular feature makes the BIE method well suited to those prob
lems with irregular-shaped boundaries. 

Applications of the boundary integral numerical method to heat 
conduction problems have received less attention as compared to 
those problems in solid mechanics. This is due to the limitation of the 
BIE method to those cases of linear conditions such as constant flux 
or constant temperature. Many papers have appeared in the literature 
which show the application of the method to the solution of conduc
tion problems where conductivity and both the temperature and flux 
at the boundaries are constants [7-10]. 

Rizzo and Shippy [10] applied the Laplace transform and the 
boundary integral method to obtain transient solutions for an infinite 

1 Currently at the College of Engineering, University of South Carolina, 
Columbia, S. C. 29208. 
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cylinder with convection from its surface. Chang, et al. [11], and re
cently Wrobel and Brebbia [12], presented a formulation for the case 
of transient heat conduction where they directly integrated the 
equations over the real times. 

Khader [13], by employing Kirchhoff's transformation, was able 
to use the BIE method to solve the steady cases of heat conduction 
in regions with thermal conductivity dependent on temperature. The 
technique was limited to those problems with prescribed flux and 
temperature boundary conditions. The progress achieved so far in 
applying the BIE method to the solution of heat conduction problems 
is far from being a general technique. The limitation is imposed by 
the linearity requirements of both the governing equation and its 
boundary conditions. 

In relation to the problem of heat conduction in regions with tem
perature dependent thermal conductivity, Sparrow and Koopman 
[14] devised a solution method for those cases with convective 
boundary conditions. The method is based on using the Kirchhoff 
transformation and a numerical iteration procedure. A primary so
lution for the transformed differential equation, with the linear 
boundary conditions of the primary problem retained and the con
vective condition replaced by an assigned temperature condition, is 
obtained and used as the starting point for the iteration procedure. 

In the present investigation, the BIE numerical method is modified 
to become an iterative technique. This modification enables the 
method to numerically solve steady-state heat conduction problems 
with no restrictions imposed on either the conduction equation or its 
boundary conditions. The present technique is applicable to two- and 
three-dimensional problems with thermal conductivity or tempera
ture dependent constant and boundary conditions of the first, second 
and third kinds or their combinations. The method also allows for 
those nonlinear boundary conditions such as convection, with con
vective coefficients dependent on both temperature and space, and 
radiation. 

To illustrate the technique and to investigate its accuracy, examples 
with known exact solutions are used. Moreover, a comparison between 
the present method and the finite difference predictions is made for 
illustrating the simplicity of the present technique. Finally, several 
two-dimensional problems are utilized to demonstrate the generality 
of the present BIE method for solving those problems of curved and 
irregular-shaped boundaries with mixed boundary conditions. 

Formulation of Approach 
The general heat conduction equation for a region occupying a 

volume V is given as 

V • (K(T)VT) + q'" = 0 inV (1) 
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RADIATION 

CONVECTION 

Fig. 1 Heal conduction in a general region with prescribed boundary con
ditions 

where K(T) is the thermal conductivity of the material given as a 
general function of the temperature. The surface of the region S is 
subjected to the following types of boundary conditions (see Fig. 

1). 
i Boundary condition of the first kind 

T = /o(r„) 

ii Boundary condition of the second kind 

bT 
— = K"Vo(r s) 
on 

iii Boundary conditions of the third kind 

bT 
K — + H(rs, TS)TS= /0(r„) (convective) 

on 

bT 
K — + C T / = / 0(r s) (radiative) 

bn 

(3) 

(4) 

(5) 

where r s represents points on the boundary, S, blbn defines differ
entiation with respect to the outward normal to the surface, and H(r5, 
Ts) is the convective heat transfer coefficient as a function of both 
position and temperature. The general form of equation (4) may 
represent the cases of free or forced convections, boiling and con
densation at boundaries. /o(rs) is a prescribed continuous function 
on the surface. 

Equation (1) and the boundary conditions present a nonlinear 
problem which has no general theory yet available for its solution. 
However, if the thermal conductivity and H are constants, the 
equation becomes linear provided that the radiation condition at the 
boundary is absent. Moreover, equation (1) with temperature-de
pendent conductivity can be linearized by Kirchhoff s transformation 
[13] but the boundary conditions (4) and (5) remain nonlinear. Con
sequently, no analytical solutions for the equation are generally 
available. However, the advantage of this transformation will be used 
in the present investigation as follows. Application of Kirchhoff's 
transformation to equations (1-5) gives 

V26 + q'"/K0 = 0 

fl = / ( r . ) 

bd 

bn 
Ko-Vofr.) 

and equations (4) and (5) are combined into 

^ + K0-W(ra, Ts)ds + Ko-iCBs* = f0(rs)KQ-
bn 

(6) 

(7) 

(8) 

0) 

where 

J To K0I 

TK(T)dT 

(To) = 
L(T) 

with the inverse transformation L 1(d) = T, 

H' = H(va, Ts)Ts/ds 

and 

c = crsyea 

For the case of constant thermal conductivity the transformation is 
(2) 0 = T, K0 = K, H' = H and C = C". 

Equations (6) and (9) are now in suitable forms for formulation of 
the boundary integrals. Consider a function, U, which satisfies V2U 
= aS (| r — ro |) ;2 Green's theorem [8] gives for both 6 of equation (6) 
and U the following integral equation. 

f (8X/2U - UV28)dV = (Id — -U—)dS 
•Jv Js\ bn bn) 

(10) 

It has been established by [8] that the form of U is f/p) = 1/47T | r | for 
three-dimensional cases and f/(2) = —l/2ir LN(\r\) for two-dimen
sional cases. When the functional form of U is substituted into (10) 
it leads to 

r I bu b6\ r 
a6(r)= 0 U—\dS- j (q'"/K0)UdV (11) 

Js\ bn bn) Jv 

with 

a = 4TT and U = U{3) (3-D) 

a = 2TT and U = t/(2) (2-D) 

If all the values of 6 and dd/bn are known at each boundary point, 
equation (11) permits the evaluation of the value of 6 at any interior 
point of the region. This, of course, will contradict the requirements 
of a well-posed problem, i.e. both temperature and temperature 
gradient are not known at the same boundary point prior to the so
lution. However, in the limit as an interior point is allowed to approach 
a point on the boundary, equation (11) gives [7] 

2 Where ai{\r — r0|) is a concentrated heat source at r0. Extensive review 
of the BIE method can be found elsewhere [8]. 

• N o m e n c l a t u r e . 

A = defined by equations (15) and (16) 
C = product of Stefan-Boltzmann constant 

and surface shape factor 
C' = as defined in the text 
fo(ts), f(rs) — space function at the 

boundary 
f(rs) = defined by equations (15) and (16) 
H(rs, Ts) = convective heat transfer coeffi

cient as a function of both position and 
surface temperature, W/m2 °C 

H' = as defined in the text 
i — iteration number or index for summa

tion 
] = element number 
K(T) =K = material thermal conductivity as 

a function of temperature 

KQ = K{To) = material thermal conductivity 
at a reference temperature 

L( ) = designates transformation oper
ator 

M = number of boundary segments (ele
ments) 

MM = number of volume cells 
n = outward drawn normal to surface 
q = heat flux, W/m2 

q'" = volumetric heat generation, W/m3 

r = general position coordinate 
r s = designates surface position 
S, s = region surface 
SF = surface shape factor 
T = temperature, °C or K 
Ts = surface temperature, °C or K 

T„(r s ) = surrounding temperature, °C or 
K 

^(2), U(s) = two- and three-dimensional 
singular solutions of Laplace's equation, 
respectively 

V = region volume 
x, y, z = general Cartesian coordinates 
(2-D), (3-D) = indicates two- and three-

dimensional, respectively 
a = numerical coefficient in equation (11) 
|8 = numerical coefficient in equation (12) 
6 = transformed temperature 
9S = transformed surface temperature 
V2 = Laplacian operator 
S = Dirac's delta function 
All dimensions are in SI units. 
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which is the required information needed by equation (11) to compute 
the temperature d, at any interior point. 

Iteration and Numerical Procedures 
In general, no analytical methods are available for the solution of 

equations (11) and (12). However, for very special geometries, an 
analytical solution may be obtained using Green's function con
structed for the given geometrical region. In this section, a general 
numerical scheme for the solution of equation (12) is discussed. 

The starting point in the present numerical scheme is to divide the 
boundary of the region, S, under investigation into M piecewise, flat 
segments as shown in Fig. 2. Equation (12) is then discretized for each 
of these segments in the form 

MM n 
BBi(rs)+ £ ( (q'"/K0)UdV 

-zlf^ds- CuMdsUo as) 
j=i [JSj bn JSj \dnlj J 

where each segment is defined by two nodal points as shown in Fig. 
2. For the volume integrals of the heat generation term, MM internal 
cells are defined and used for their numerical evaluation. These in
tegrals do not introduce any further unknowns, since all the quantities 
involved are known and hence equation (13) is still a boundary 
equation. The integrals of equation (13) are all evaluated numerically 
using a simple quadrature. If equation (13) is written for each 
boundary segment, a set of M algebraic equations is obtained relating 
the 2M quantities 8 and bd/bn. Depending on what boundary quantity 
is known, a total of M values of 6 and bd/dn have to be specified and 

Table 1 Comparison between exact and BIE predict ions 

CASE # 

1 

2 

3 

4 

5 

6 

7 

BOUNDARY CONDITIONS 

BOUNDARY/-V 

CONST. T 

T j = 200C 

CONST, q 

q = 1000W 

CONVECTION 

T „ r 600K 

CONST. T 

T j = 300K 

CONST. T 

T j = 100C 

CONST, q 

q = 50W 

CONST. T 

T 1 =2 (10 4 )C 

BOUNDARY,-^ 

CONVECT. 

T „ 2 = 5 0 C 

RADIATION 

T ^ = 350K 

RADIATION 

T ^ 300K 

CONV. +RAD. 

T ^ j 1 500K 

CONVECTION 

Tm2= 20C 

FREE CONV. 

T „ 2 = 2 5 C 

RADIATION 

T „ 2 = 0 C 

PARAMETERS 

a 

2 

1 

10 

1 

1 

1 

2 

b 

3 

.5 

10 

.25 

2 

4 

2 

K 

1.5 

2.0 

5.0 

0.2 

0.5(1+.01T) 

0.5 

1 

H 

10. 

--

20. 

1 

3 

--

SOLUTION 

EXACT 

T 2 = 57.14 

| l l = - 4 7 . 6 2 
3nJ 2 

T 1=675.07K 

T2=425.07K 

. 4 - -5o° 
Tj»593.18K 

T2=320.17K 

T2=494.61K 

| l | =788.44 

T2 = 29.66C 

| I | - 4 4 . 7 1 

Tj=435.99C 

T2 = 35.97C 

isV -io° 
T2=642.88C 

•21J =-9678.6 

NUMERICAL 

T 2 = 57 .11 

T1=674.87K 

T2=425 K 

5 1 ] =-499.55 
3 n j 2 

T2=320.62K 

I K ] - 2 7 - 2 

T2=494.65K 

1^1=773.25 
3 n ] 2 

T 2 = 29.61C 

111 
3nJ2= - 4 4 . 5 2 

T1=434.91C 

T 2 = 35.96C 

-511 =-99.42 a n j 2 

T2=641.88C 

| 1 =-9623.5 
an 2 

* 

TIME 
SECONDS 

2 .11 

3.77 

4.48 

2.83 

3.14 

3.72 

30.48 

* Computational time on an AMDAHL 470 Computer 
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j80(r„) 

with 
£• 

: = 2TT 

a t / _ bff 

bn bn, 
dS- C {q'"/K0)UdV (12) 

and 

and 

U = t/(3) 

U = 1/(2) 

(3-D) 

(2-D) 

For corners and nonsmooth boundary points, B is equal to the interior 
angle formed by the tangents at the point [7]. 

Equation (12) involves only boundary data and is a supplementary 
equation to equation (11). The solution of (12) provides 8 and bd/bn, 

"~ LLEMENT 

j - M 

O INTERIOR POINT 

• BOUNDARY POINT 

Fig. 2 Boundary descret izat ion 
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the equations can then be solved for the remaining unknowns. At this 
point, the solution of the set of the algebraic equations is a straight
forward matter provided that all quantities of dd/on are either a linear 
function of temperature or of space. This includes only those types 
of boundary conditions of equations (2-4) with H and K independent 
of temperature. On the other hand, if K depends on the temperature 
or a part of the boundary is subjected to either nonlinear convection 
or radiation, the resulting set of the equations becomes nonlinear. 
Solution of these equations, in general, requires a sophisticated and 
time-consuming iterative numerical procedure, for example the 
Newton-Raphson method. In addition, convergence to the right so
lution is not always assured in some cases. 

In the present investigation, a simple iterative scheme is developed 
to solve those problems which possess nonlinear boundary conditions. 
The scheme starts by rewriting equation (9) in a pseudo-linear form 
as 

— = K<rlff(rs) - ABS] (14) 
on 

with the coefficient A and / ( r s ) in the following form 
i convection case 

A = H(rs, Ts)Ts/ds 

f(rs) = H(rs,Ts)T«,(rs) (15) 

ii radiation case 

A = 4CT(1)
3TS/0S 

fit.) = 4CTw*T„(r.) (16) 

where T(i) is a fictitious temperature obtained by using Rolle's the
orem [15] to expand Ts

4 (or ds
4) in terms of T„. The iteration proce

dure starts by taking T(u = Ts (i.e., ds) = T„ for those elements 
having boundary conditions in the form of (14). Accordingly, A and 
/(r s) are determined from equations (15) and (16). The value of i>6/on 
is next evaluated and substituted into the set of equations resulting 
from the use of equation (13) for all elements. Solutions for all the 

Table 2 Selected results from BIE solutions 

Resu 
Figure 

element # 

1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 

48 
/qdA = l A.K 

j = l J J 

Its for 
3 Example 

T 

100 
100 
100 
100 
100 
100 
100 
100 
63.5 
34.8 
29.0 
27.1 
26.7 
27.5 
30.2 
39.3 

nT 
d 1 

3n 
= 1 

j 

3T 
3n 

102.5 
15.0 
9.2 
7.4 
7.1 
7.8 
10.4 
20.0 
-88.8 
-49.6 
-34.6 
-28.7 
-27.5 
-30.1 
-38.1 
-58.7 

.385 

Results for Hea 
Exchanger 

element # 

1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 

a 
d 
g 
f 

^q/KdA = 

t 
Tube Example 

T 

135.1 
90.6 
74.4 
79.8 
93.8 
104.2 
108.8 
110.2 
121.0 
150.8 
157.4 
156.1 
153.5 
149.7 
146.3 
144.0 

110.5 
122.9 
132.6 
130.8 

4 6 3T 
I A — 

J-l J 3n 

3T 
3n 

0 
0 

-4197 
-4235 
-2862 
-2724 
-2591 
-2630 
0 
0 
5488 
5724 
6186 
6867 
7484 
7899 

= .3 

j 

Fi 

element i 

1 
5 
9 
13 
17 
21 
25 
29 
33 
37 
41 
45 
49 
53 
57 
61 
65 
69 
73 
77 
81 
85 

/q/KdA 

Results 
gure 6 E 

T 

300 
304.8. 
402.3 
447.9 
489.4 
500.5 
504.6 
492.6 
448.9 
476.8 
496.1 
502.7 
552.8 
600.0 
500.0 
530.9 
514.9 
515.0 
477.0 
431.4 
401.8 
368.5. 

88 

= I A. 
J = 1 J 

for 
xample 

3T 
3n 

j 

3T 
3n 

-108.96 
50.89 
27.44 
16.83 
10.54 
-.20 
16.67 
0.0 
0.0 
15.94 
2.93 
-.20 
30.80 
60.33 
71.95 
0.0 
0.0 
1.67 
6.67 

-54.29 
-34.52 
-12.33 

.912 

T=100C 

H = 30 W/fl C, T„ = 20 C 

U- . 5 -»4*-. 5 -w 

Fig. 3 Heat conduction in a symmetrical region with temperature dependent 
thermal conductivity 

syimtetry plane 

Fig. 4 Heat transfer in a heat exchanger tube with variable surface con-
vective heat transfer coefficients 
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unknown values of 8 and dB/dn are then obtained by a matrix inver
sion numerical subroutine. For only those elements where T(u and 
Ts (i.e., 0S) are previously assumed, the new value of 8S (i.e., Ts) and 
a new weighted value of T(x) are substituted into equations (15) and 
(16) where new values of A and / are obtained. The procedure is re
peated as before until a convergence criterion in the form |0s(i+i) — 
8s(i)\ reaches a certain tolerance. It has been found that the procedure 
is stable and converges to the right solution after a few iterations. 
Accurate solutions for some cases of extreme values of boundary 
conditions are also obtained using the present numerical scheme (see 
case 7 in Table 1). These results indicate that the iterative numerical 
scheme presented is a general and accurate technique for solving this 
class of heat transfer problems. 

Results 
As a rigorous test of the present numerical method, a one-dimen

sional heat conduction problem of a simple rectangular plate is se
lected. The plate is of a length a, width b, and unit depth. The two 
lateral surfaces are kept insulated in order that exact solutions can 
be obtained. The other two boundaries designated ® and (2) are then 
subjected to a variety of practical boundary conditions. A total of 
seven cases are presented in Table 1 with the associated parameters 
and boundary conditions. Exact solutions are compared with the 
numerical predictions obtained. Case number seven is an unrealistic 
case, but it provides a check on the convergence of the iterative 
scheme. Examination and comparison of the results indicate that the 
BIE iterative numerical method is stable and accurate. It should be 
noted here that for the case of radiative boundary, case 7, an error of 
about 0.5 percent in the temperature gradient is encountered. This 
was due to the small error in the temperature predictions of about 0.15 
percent and the nonlinearity of the radiation boundary condition. 

The second example of Fig. 3 represents a case of heat conduction 
in a symmetrical region with thermal conductivity dependent on 
temperature. The circular cross-section has thermal conductivity in 
the form K = 2(1 + 0.1T); the upper and the lower halves are 
subjected to a constant temperature and convection, respectively. The 
numerical results as shown in Table 2 indicate that the solution pre
serves the symmetry expected with a small error as indicated by the 
net heat transferred from the boundary. 

As an example of a variable surface convection coefficient case, a 

cross-flow heat exchanger tube is presented. The tube transports a 
high temperature gas with the cooling fluid flow normal to the tube 
on the outer surface (see Fig. 4). The coefficient of heat transfer on 
the outer surface is variable while it assumes a constant value at the 
inner tube surface. The numerical solution of the problem is shown 
in Table 2 for both temperatures and heat fluxes. The numerical 
calculation using the standard Fortran language took about 3 s on an 
AMDAHL 470 computer. 

To demonstrate the accuracy of the solutions obtained by the 
present method as compared to other numerical techniques, the 
problem of Fig. 5 is used. The conduction equation for the rectangular 
region shown is solved by both the BIE and the finite difference 
techniques. In the finite difference technique a total of 66 grid points 
are used compared to only 28 elements for the BIE method for the 
same solution accuracy as shown in Fig. 5. An important fact that 
should be mentioned with regard to this comparison is that in the fi
nite difference method a total of 66 equations are solved while in the 
BIE only 28 equations need to be solved. This is translated immedi
ately to a 1:5.6 savings in computer storage requirements. In addition, 
if the 36 interior temperature values of the finite difference scheme 
are solved for by using the BIE method, the computer storage re
quirements stay the same. This important fact makes the BIE method 
superior to the finite difference and suitable for minicomputer use. 

Finally, a very general case of heat conduction in a two-dimensional 
region with mixed type boundary conditions is investigated. The ir
regular-shaped boundary of the region consists of flat and curved parts 
as shown in Fig. 6. Most of the types of boundary conditions en
countered in practice are specified in Table 3. The region boundary 
is divided into 88 segments of different length; numerical results are 
then obtained for the unknown values of either 8, or dd/dn for each 
of these segments. The boundary results are then used to calculate 
the temperature values at 36 interior points. The total numerical 
calculations took 30.4 s including reading the data and printing the 
final results. Figure 7 shows the temperature distribution in the x-
direction for y = 0.5 while the temperatures and the gradients at the 
region boundary are given in Table 2. As a means of an assessment 
of the solution accuracy, the net heat transferred from all boundaries 
is calculated as shown at the end of Table 2. 

These solutions for the previous heat transfer examples indicate 
that the present iterative boundary integral method is accurate and 

T_- 20°C, H = 50.W/HC 

93.7 C 59.3 C 

99 .0 C 46.7 C 

8 3 . 3 C 

q » ' = 1 0 6 * 
8 4 . J C - J 

100.8 C 47 .0 C 

97.8 C 74.4 q = 0 

F i n i t e D i f f e rence , 66 Nodes 

• + — I — H ~ 
98.7 C 

100.7 C 

H—1—(— 

i—1—H— 

83.1 C 
• 

83.8 C 

+-H—t— 

4-«- l—1—h 
45.7 C 

46.9 C 

4 1 1 H 
97 .6 C 74 .2 C 

5 
BIE, 28 Elements 

Fig. 5 Finite difference and BIE comparison for a case with heat genera-
lion 

Table 3 Boundary conditions for Fig. 6 

2 ~-ir-~~ 4 

Fig. 6 Two-dimensional plate and boundary conditions 

Elements Boundary Condition 

1-4 
5-22 

23-26 
27-33 
34-36 
37-48 

49-51 
52-59 
60-68 
69-70 
71 
72 
73-75 
76-88 

T = 300 K 
Radiation, T„ = 500 K, SF = 0.8 

q = 1000 W 
q = 0 

Convection, H = 30, T„ = 300 K 
Convection + radiation, H = 20, 

T„ = 500 K, SF = 0.9 
Radiation T„ = 600 K, SF = 0.75 
T = 600 K 
q=Q 
q = 100 W 
q = 200 W 
q = 300 W 
q = 400 W 
Convection, H = 40, Ta = 350 K 
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Fig. 7 Temperature distribution for the plate problem 

general for solving most of the conduction problems of practical im
portance. Although the examples cited in the present paper are all 
of a two-dimensional nature, the method is also suitable for three-
dimensional cases. For problems with internal heat generation, the 
only added effort is the evaluation of the volume integral in equations 
(11) and (12) which involves known functions. However, for those 
cases with a constant heat generation term, the problem may be re
duced to a case with no heat generation through a particular trans
formation. In addition, if the heat generation term, q'", is a harmonic 
function of the space variables, the volume integrals of equations (1) 
and (3) are transformed directly to surface integrals using Green's 
theorem. These two cases are discussed in detail in the Appendix. 

As a final remark, it should be mentioned here that temperatures 
calculated at interior points very near the boundary are generally not 
very accurate. This inaccuracy is a result of the approximation of the 
actual boundary contour by finite segments. Yet, it has been found 
that an interior point at a distance comparable to the length of the 
nearest segment maintains an accuracy comparable to that of other 
points far from the boundary. This, of course, does not represent a 
drawback for the method, since temperatures and fluxes at the 
boundary are obtainable directly without reference to the interior 
point. 

Conc lus ions 
The iterative boundary integral method has been shown to be ap

propriate for use in numerically solving a variety of steady-heat 
conduction problems. The method in its present form has no inherent 
limitations as to the geometric complexity, kind of boundary condi
tion, or the material thermal conductivity. 

The method is most suitable for calculating temperature and heat 
flux at the system boundaries and at a few individual interior points. 
This feature makes the method superior to available numerical 
methods, where the solution involves all interior points. As in most 
of the practical calculations of heat transfer, boundary fluxes and 
temperatures are the only needed information.3 However, complete 
temperature distributions are directly obtainable with minimum ef
forts. This advantage has been proven to induce a savings in computer 
storage and time. Another primary advantage of using the boundary 
integral equation for the numerical solutions rather than the original 
differential equation is the space reduction of the problem. If the 
problem is three-dimensional in space, the boundary integral equation 
is a two-dimensional one which requires less effort and time for its 
solution. 

An important potential for the use of the present method is the 
steady inverse problem in heat conduction. The known values of the 
temperature at the interior points may be used to generate a set of 
equations from equation (11) together with another set of equations 
as equation (12) for solving the unknown boundary data. 

Finally, the present method can be simply extended to include the 

transient heat conduction problems and to some specific problems 
of convective heat transfer. This will in turn make the BIE method 
a more competitive numerical technique to the already existing 
methods. 
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APPENDIX 
Conduction with a Constant Heat Generation Term. For those 

cases of heat conduction with volumetric heat generation independent 
of both temperature and space, the following transformation is de
rived: 

X 
TK(T)dT 

'To K(T0) K0(T0)N 

4 (two-dimensional cases) and N 

[x2 + y2 + z2] 

6 (three-dimensional with AT 
cases). 

This transformation when applied to equation (1) gives 

V20 = O 

where the heat generation term has disappeared. Also, minor modi
fications of the boundary conditions, equations (7, 8), and (9), are 
required. This procedure reduces the numerical efforts substantially, 
since no numerical integration for volume integrals are needed. Ac
cordingly, the same numerical steps for the case with no heat gener
ation will be applied. 

Conduction with a Harmonic Function Heat Generation 
Term. If the heat generation term of equation (1) is a harmonic 
function of the space variables, the volume integrals of equation (11) 
and (12) may be expressed as surface integrals. This can be achieved 
by the use of Green's identity. Accordingly, 

J> 7K0)UdV •s. q'"/Ko^--^(q"'/K0)<l> 
on on 

0 = | r | (3-D) 

1, 
- r -r 
4 

|[LJV(|r |)-l] (2-D) 

dS with 

3 For example, fins and heat exchanger tubes. 
Thus, equations (11) and (12) and the rest of the analysis will involve 
only surface integrals on the boundary. 

Journal of Heat Transfer FEBRUARY 1981, VOL. 103 / 31 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S. S. Sadhal 
Assistant Professor, 

Department of Mechanical Engineering, 
University of Pennsylvania, 

Philadelphia, PA 19104 
Assoc. Mem. ASME 

Unsteady Heat Flow between Solids 
with Partially Contacting Interface 
The problem of the transient thermal response of two semi-infinite solids not making per
fect contact, is treated analytically by modeling the interface to be a series of equally 
spaced strips making perfect contact. The remaining area is assumed to perfectly insulat
ed, and a criterion is established for the validity of this assumption, taking radiation into 
consideration. The mixed interface conditions present a considerable difficulty and a 
long-time perturbation scheme is therefore used to obtain approximate expressions for 
the transient temperature distributions, average heat flux and the thermal contact resis
tance. The method is applicable to a large class of problems with mixed boundary condi
tions for which the existing techniques give exact solutions only for the steady state. 

1 I n t r o d u c t i o n 
The heat transfer between two solids not having perfect contact 

at the interface is of fundamental importance in dealing with contact 
resistance. In the present study, the contact between two flat surfaces 
is modeled in two dimensions by a series of equally spaced strips 
having perfect contact. In the remainder of the region we would have 
conduction, convection and radiation through the air spaces. Because 
of the low thermal conductivity of air and the small size of the air gaps, 
conduction and convection may be ignored. Radiation may be im
portant at large temperatures of the interface, particularly if the re
gion of perfect contact covers only a small fraction of the interface. 
In the latter part of this analysis, calculations are carried out to es
tablish a criterion for which radiation may be neglected. These cal
culations show that for metallic solids contacting over only 1 percent 
of the area with contacts 1 cm apart and interfacial temperatures up 
to 1000 K, the contribution from radiation is less than 2 percent of 
that from conduction. Clearly, for such conditions radiation may be 
neglected. 

The above description of the contact is particularly realistic for 
machined surfaces, or surfaces which are otherwise wavy. The physical 
situation for the geometry also exists in the case of sheets partially 
welded at the edges. The heat flow at the interface is described by 
mixed boundary conditions which cannot be treated by the usual 
Fourier series. Such boundary conditions lead to sets of dual series 
equations for which the exact methods developed [1] are restricted 
to steady-state heat flow. The steady state problem with the interface 
conditions as described above has been treated exactly by Dundurs 
and Panek [2]. 

The difficulty with the unsteady case becomes apparent as the 
appropriate dual series equations are developed. In view of this dif
ficulty, an approximate solution is found through the use of a long 
time perturbation scheme. The method used is applicable to a large 
class of problems for which the exact solutions are available only for 
the steady state cases. It is perhaps appropriate to note here that if 
we are dealing with a problem involving "non-mixed" boundary 
conditions for a semi-infinite medium, an exact unsteady solution for 
all time may be found analytically. 

In the present analysis, we obtain a long-time approximate solution 
for two solids, initially at different temperatures, brought into contact 
over a series of equally spaced strips. The problem of the transient 
response of two solids in contact over a finite circular disk has been 
treated numerically by Schneider, et al. [3] and analytically for long 
time by Sadhal [4]. 

2 S t a t e m e n t of P r o b l e m 
Two semi-infinite solids initially at uniform but different tem

peratures are brought together and perfect thermal contact is es
tablished over a series of identical, equally spaced strips. The regions 
between these strips are assumed to be insulated. By recognizing the 
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periodic nature of the problem, we can find planes of symmetry and 
we can require that the temperature distribution be an even function 
about these planes. These planes are taken to be a distance £ apart. 
As shown by broken lines in Pig. 1, the planes bisect the insulated 
regions and the region of perfect contact. The insulated regions are 
shown by double lines and are taken to be a width 2c*. 

The initially hotter solid is referred to as region 1 (y * > 0) and the 
other solid as region 2 (y* < 0), as shown in Fig. 1. The initial tem
peratures are denoted by Tio and T2o for regions 1 and 2, respectively. 
In the rest of the analysis the subscripts 1 and 2 are used in reference 
to the properties of the corresponding regions. 

The conduction process is described by the heat equation which, 
under the conditions stated for the model, may be written as 

1 d T ! d2Ti £>2Ti 

dx*2 dy*2 
•• -, t>0; 0<x*<£; y* > 0, 
Ki dt 

and 
(1) 

dx* 

subject to 

d2T2 d2T2 

" ay*2 : 

1 dT_2 

K.2 dt 
- , t > 0 ; 0<x*<£; y* < 0, 

Ti = Tm 

T<i = T20, 

dx* 

0 <x* <£; 

0<x* <£\ 

y* > 0 , 1 

y* < 0, ( 

0, x* = 0,x*=£; t>0; y*>0,t 

and 

^ = 0, 
dx* 

Ti-

(2) 

(3) 

••0,x* = £; t > 0 ; y* < 0, 

ki — = k2—\'y*=0; t>0; c*<x*<£,. 
dy* dy*J > (4) 

; 0 , y* = 0; £>0 ; 0 < x * < c * , 
dT1=dT2 

dy* dy* 

where T\ and T2 denote the temperature distributions, k\ and k2. 
represent the thermal conductivities, KI and K2 refer to the thermal 
diffusivities, x* and y* are the space coordinates, and t is the time. 

3 Analysis 
By introducing dimensionless variables, x = irx*/£, y = iry*/£, 

c = irc*/£, 0! = (T\ - TJWVCTIO - T20), 62 = (T2 - T20)/(T10 - T20), 
and then taking the Laplace transform of 0i and d2 in time we ob
tain 

£2 +£^o 
7T zKl TT^Kl 

d29i d 2 9 t 

dx2 dy2 
0<x<ir; y > 0 , i 

p£2 d2e2 + d2e2 

dx2 dy2 

(5) 

0 < x < G; y < 0, 
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• Lines of symmetry 

Region I 

- Insulated 

-~J 2c" — 
—|c"l— 

L 21 A I I 

Regions of perfect contact I 

regions 

Region 2 

Fig. 1 Two solids In contact over a series of Identical, equally spaced 
strips 

subject to 

d9 i 

dx 

ae2 

dx 

= 0, x = 0, x = IT; y > 0, 

= 0, x = 0, x = ir; y < 0, 

and 

9 i - 02 

, 59 i d 0 2 

fel—- = K2—— 
dy dy _ 
d9 i = d92 

dy dy 

y = 0; c < x < ir,\ 

0, y = 0; 0 < x < c, 

where 

G, , i ( * , y , p ) = f " e - P t f l i ( * , y , t ) d t , i = l , 2 , 
J o 

is the Laplace transform of 6i(x, y, t). 
In view of (6) the solution may be written as 

1 
9 i = — + Y, an\ exp[— (ra2 + p£2fa2 Ki)1/2y] cos nx, 

P n=0 

y 2: 0,| 
and 

©2 = E o„2 exp[(re2 + p^2/7r2/c2)1/2y] cos nx, 
n = 0 

Here o„i and an% must satisfy 
y < 0 . 

raa + 
p£- 1/2 

Onl = 

ra2 + 
p£'' 1/2 

"Ori2, 

(6) 

(7) 

(8) 

(9) 

(10) 

E (a„2 - ani) cosnx = — , c <x <ir, 
«=o p (11) 

and 

/ D^ 2 \ ! /2 
E an2 « 2 + , cos rax = 0, 0 < x < c . (12) 

n = 0 \ TT2K2/ 

This set of dual series equations (10-12) is not possible to invert 
with the known analytical techniques, except forp = 0 which corre
sponds to the steady state. Therefore, approximate methods are 
employed and a perturbation scheme for small p is used to obtain a 
solution valid for large t. 

4 S o l u t i o n by P e r t u r b a t i o n 
If we let 

ani = - k ' 0 ) + p ^ W " + Pani™ + p3/2om-<3> + . . . ] , 
P 

i = l , 2 (13) 

substitute into (10-12), and expand in powers of p 1 / 2 , we obtain the 
following after a lot of tedious algebra involving dual cosine series. 

felK21/2 

Q02' (0) , 

ao2' (i) 

ftl/C21/2 + fe2*l1/2 ' 

o„2
(0) = 0, re = 1, 2, 3, 

2k1K21'2£{k1 + fe2) 

ra = 0, 

(kiK2
1/2 + ft2Kl1/2)2 

£n (cos V2c), 

On2 (1) : 
ki£ 1 

— - — — - [P„(C08 C) - P „ - l (COS C)], 
Tr(k\K2vi + fe2fi ' ) n 

re = 1,2, 3 , . 

0 0 2 

ani 
(2) 

(2) = i W ^ i l M i 
irHkiKi1'2 + fe2Ki1/2)3 

= * * 2 £n (cos V2c) - [PJcos c) 
IT ( « 1 K 2 1 / 2 + fe2Kl1/2)2 fl 

(14) 

(15) 

(16) 

(17) 

ao2 ,(3) = 

- P„_i (cos c)], re = 1, 2, 3 (18) 

8fel/£2
1/2^3(/2l + fe2)3 

Tr3(felK2
1/2 + fe2Kl1/2)4 

felK21/2^3 

|A(cos V2c)]3 

32TT2(k1K2m + k2K1
1'2)2 \K2 K! 

X E - J [Pm(cos c) - Pm- i (cos c)] (19) 
= i m ° 

a„2
( 3 ) = i 

+ 

4 M 3 ( & i + fc2)
2 

[*n (cos y2c)]3 

1 1\ 1 

TT^XKS 1 ' 2 + feaKi1'2)3 

feife2l
3 

2ir3(fe1/c2
1/2 + k2K1V

2)(k1 + k2) W KJ n3. 
[P„(cosc) 

• P n - i (cos c)] + 
327T2(felK21/2 + ^2Kl1/2)(fel + k2) 

Ikl ko\ » 1 r 

X — + — E — [P m ( cosc ) -P m _i (cosc ) ] f l m n , 
\«2 f l / m = i m 3 

ra = 1,2,3,.. 

where Pm is the Legendre polynomial of order m, and 

(20) 

. . N o m e n c l a t u r e . 

c* = half-width of regions of no contact Rfc = full-contact thermal resistance 
c = c*ir/£, dimensionless half-width t = time 
Fo; = Kit/£2 = Fourier number Ti,T2 = temperatures in solids 1, 2 
ki, k2 = thermal conductivity of solids 1,2 Tio, T2o = initial temperature of solids 1,2 
£ = width of lines of symmetry x*,y* = cartesian coordinates 

01 = (Ti - T2o)/(T10 - T20) = dimensionless 

Ti 
d2 = (T2 - T2 0)/(Ti0 - T20) = dimensionless 

T2 

9 i , ©2 = Laplace transforms of d\, 62 
f/av = average heat flux 
R = thermal resistance 

x, y = x*ir/£, y*ir/£, dimensionless cartesian KI, K2 = thermal diffusivities of solids 1,2 
coordinates a = Stefan-Boltzman constant 
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Bmn = E (-Dm -* , Pm-l(x)[Pn(x) + Pn-lW]dx. (21) 
k=l * /cos - 1 c 

The relation between (W'* and a„2
(1 ) is found from (10) to be 

aoi ( ' ) = -r L i T7;«02 ( ' ' ) . » - 0 , 1 , 2, 3; (22) 
kmm " ' ' ' ' ' 

ko 
ani

(i) = - — am10, i = 0 ,1 , 2, 3; n > 1 (23) 

and 

Oral (3) = 

ftl 
a„2(3) • 

1 [1 1\ 
2n2ir2 Ui KJ 

d) (24) 

The algebra for the derivation of these equations (14-24) is left out 
for brevity. The details may be obtained from the author upon re
quest. 

5 I n v e r s i o n of t h e S o l u t i o n s 
Upon the inversion of Gi and O2, into the time domain, we obtain 

for |y | > 0 

fli(x,y, t) = 5 l ii-t-a0i (0 )erfc 

.mJM 

t\y\ 

aoi' ..1/2 • a o i 
(3) 

2IT(K;£)1 /2 

1 

aoi U>-

exp 

(7Tt)1/2 

f &£_ 
i = 1, 2 (25) 

2(Tt3)V2 

The temperature distributions at the interface (y = 0) are found 
to be given by series expressions, which upon summation [2] to order 
t~1/2 are given by 

6i(x, 0, t) = &1K2 1 / 2 

( W / 2 + fc2Ki1/2) i rd r t ) 1 ^ 

fe2 

2k1k2(K21/2 - Kl1/2) 

and 

02(*,O,t) ; 

X Ai(cos V2C) + 

x£n 

felK2
1/2 

(AlK21/2 + fe2Kl1/2) 

cos 

cos 

xkx /cos2 V2« \ 

y2C \cOS2 V2C / 

l ( W / 2 + ft2Kl1/2)2 

H(e - x) 

1/2V 
+ (26) 

e [2fe1fe2(K1'/
2 - K21/2) 

(klK21/2 + fe2Kl1/2) ^ ir(TTt)1/2 KfelKj1/2 + hiKl1'2)2 

kl 
X ^n (cos V2 c) + 

X ^ n 

(k!K21/2 + k2Kx1'2) 

COS V2* /COS2 y 2 * ^1/2 

H ( c - x ) 

cos y2c \cos2 y2c + ... (27) 

where H denotes the Heaviside step function. 
The average heat flux per unit across the interface is given 

by 

<7av - C^io — T20) 
felfe2 7T k\ + fe2 

(fel + ft2) ̂  TT(klK21/2 + k2Kl1/2) (lTt)1/2 

(kl + k2)
S 

THIUKi1'2 + fe2Kl1/2)3 
[Ai(cos y2c)]2 £3 

(irt*)1'2 
(28) 

By taking the reciprocal of this result we obtain the average resistance, 
R, for a unit area as 

fl = ( W 2 W 2 ) ( 7 r i ) 1 / 2 
felfe2 

which may also be written as 

\2 

1 + 
(ki + k2)

2 

(klK2112 + k2K^'2)2 

X ^ n ( c o s y 2 c ) ] 2 — + . 

R — Rfc 1 + -
KF 

Hi W . 

• [£n (cos y2c)]2 (TTFO^- 1 + . . . 

(29) 

(30) 

where Rfc = (feiK2
1/2 + fe2Ki1/2) (-7rf )1/2/(ftift2) is the full contact re

sistance, and P02 = K2t/£2 is the Fourier number based on the lower 
thermal diffusivity. This result is presented in Fig. 2, where R/Rfc is 
plotted as a function of Fo2/[^n(cos y2c)]2 for contacts between copper 
and steel, steel and glass, and copper and glass. 

6 Ef fec t of R a d i a t i o n 
In order to determine the contribution from radiation, we first 

obtain the temperature difference across the gap. This difference is 
obtained from (26-27) to be 

AT = (T10 - T20) 
h\ + ki 

(k!K2
1/2 + k2Kl1/2) 

H(c - x)£n cos Ykx 

(cos2 xkx 

cos2 y2c 
1/2' 

cos y2c 
£ 

ir{itt) 1/2' (31) 

The heat flux due to blackbody radiation must therefore be 

<7rad ~ <rAT(Ti + T2)(T!2 + T2
2) (32) 

where a is the Stefan-Boltzman constant and Ti(x) and T2(x) are the 
temperatures at the interface. Upon taking the maximum value of the 
right side of (32) we find that 

fei + fe2 
<7rad 5 4<r(7 ' io - T 2 0 ) 

(kXK2112 + *2Kl l / 2) 

x ^ , l + siny2c 

cos y2c / ir(irt)1'-i 

In order for c/rad to be insignificant, we must have <?rad « <7av where 
Qav is given by (28). By requiring this up to an order t~1/2 we have 

; « 

klk2 

(kl+k2) 
M£n 

1 + sin yacV 

COS X/2C / 

1/3 

(34) 

For metallic solids (fei, fe2 ~ 100 W/(m - K)), with contacts spaced 
about 1 cm apart {£ = 0.01 m) over 1 percent of the interfacial area 
(c = 0.997T), we have 

ForT, , 

while 

T m a x « 4 0 0 0 K . 

1000 K with the above specifications, we have 

W 
Qrad £ 230 AT 

m 2 - K 

9 a v ~ 1 4 0 0 0 A T -
W 

i 2 - K 

(35) 

(36) 

(37) 

Clearly, for interfacial temperatures below 1000 K we may ignore 
radiation for metallic conductors. 

j L 
Rfc 

1 1 1 1 1 | 

CONDUCTIVITY DIFFUSIVITY 
[wolli/(m-K)] (m!/secl 

COPPER 381 13.2 X l o ' 5 

STEEL 43 1.36 
GLASS 1.03 0.06 

-COPPER/STEEL 

-STEEL/GLASS 

-COPPER/GLASS 

f 2 t / [ ^<n(cos|c) ] 2 

Fig. 2 Unsteady thermal resistances of different pairs of solids as a function 
of K21/[£ £n(cos %c)f 
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It is important to note here that the comparisons made in (34-37) 
are quite conservative because the expression (28) for(jav here is for 
an average heat flux over the entire interface. The conduction heat 
flux averaged over the contact region only is given by 

<jav* ~ 1.4 X 106 AT 
W 

m 2 - K 
(38) 

instead of (37). 

7 Discussion 
The present analysis provides useful results for situations in which 

we have a large fraction of the interface in contact. This corresponds 
to the case in which c/ir« 1. In fact, when c = 0, we have full contact 
and the only terms in the solution that count are those of leading 
order. These terms then satisfy the boundary conditions exactly. For 
cases when c/ir ;S 1, however, the higher order corrections become 
unrealistically large, except for correspondingly large values of the 
Fourier number, Fo; = Kit/£2. As a suitable criterion for validity, we 
can require that the dominant term in the highest order be much 
smaller than the next lower order term. For equations (25-30) such 
a criterion would lead to the condition that 

(fei + fe2)
2 , , , u ^ * , 

(fe2Kll/2 + felK2l/2)2[^
cosl/2c)F-«i. 

(39) 

The validity of the results is further restricted by equation (34) 
which is the condition for radiation to be unimportant. For metallic 
solids with interfacial temperatures up to 1000 K, we may neglect 
radiation unless the contact spacing is very large (say, greater than 
1 m). Radiation turns out to be of increasing importance as the contact 
regions are spread wider, even if the fraction of contact is kept con
stant. This turns out to be the case because the temperature difference 
across the gap increases with £ for a given average heat flux. Since for 
a constant qav, AT increases with £, <jrad must also increase with £ as 
observed in (33). 

For the situations in which radiation is important the adiabatic 
boundary condition may be modified to include a nonzero conduc
tance. Such a boundary condition, however, would not allow the so
lution to be expressed in an explicit form even for the steady state. 

An attempt to do so will lead to a set of dual series equations for which 
explicit inverses are not available. The numerical calculation of the 
series coefficients through the use of a truncated Fourier series is in
deed possible. 

The results obtained are applicable to heat transfer problems in 
the general area of contact resistance. The model is somewhat ideal
ized for an arbitrary shape of the contact region. For machined sur
faces, however, it is very realistic. The resistance as given by equation 
(30) and plotted in Fig. 2 increases with £ even if the fraction of con
tact remains unchanged. This is because the wider spacing of the 
contact regions causes heat flow lines to be constricted to a greater 
depth thus increasing the resistive effect. The resistance is observed 
to go down with increasing fraction of contact, as expected. 

The present work is valid only for large Fourier numbers and 
therefore it would be particularly valuable to obtain a short-time 
solution. Such a solution would probably require the use of a singular 
perturbation scheme. Again, radiation would be difficult to incor
porate. The radiation problem for a homogeneous surface of a semi-
infinite solid with nonzero transmissivity has been treated by Lick 
[5]. 

It is desirable to experimentally verify the results and check for the 
validity of the model. Temperature measurements at the interface 
by means of thermocouples, for various Fourier numbers, may be used 
to verify the results. 

References 
1 Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, 

North Holland, 1966. 
2 Dundurs, J. and Panek, C, "Heat Conduction Between Bodies with Wavy 

Surfaces," International Journal of Heat and Mass Transfer, Vol. 19,1976, 
pp. 731-736. 

3 Schneider, G. E., Strong, A. B., and Yovanovich, M. M., "Transient 
Thermal Response of Two Bodies Communicating Through a Small Circular 
Contact Area," InternationalJournal of Heat and Mass Transfer, Vol. 20,1977, 
pp. 301-308. 

4 Sadhal, S. S., "Transient Thermal Response of Two Solids in Contact 
Over a Circular Disk," International Journal of Heat and Mass Transfer, Vol.. 
23, 1980, pp. 731-733. 

5 Lick, W., "Transient Energy Transfer by Radiation and Conduction," 
International Journal of Heat and Mass Transfer, Vol. 8, 1966, pp. 119— 
127. 

Journal of Heat Transfer FEBRUARY 1981, VOL. 103 / 35 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



E. J. Patula 
Research Laboratory, 

U. S. Steel Corporation, 
Monroevllle, Pa. 15146 

Mem. ASME 

Steady-State Temperature 
Distribution in a Rotating Roll 
Subject to Surface Heat Fluxes and 
Conwective Cooling1 

With the higher rolling speeds used in modern cold-rolling mills, proper roll cooling has 
become a critical factor in avoiding problems of excessive roll spalling and poor thermal 
crowning. Poor thermal crowning of rolls can severely affect the shape and profile of sheet 
and strip products. To determine the influence of cooling practices on roll temperature, 
a mathematical model was developed that determines the two-dimensional {radial and 
circumferential) steady-state temperature distribution in a rotating roll subject to con
stant surface heat input over one portion of the circumference and convective cooling over 
another portion of the circumference. The model is analytical in nature, as opposed to a 
direct numerical simulation, which enables extensive parametric studies to be performed 
conveniently. The solution technique can be used to solve numerous problems involving 
any combination of surface boundary conditions that have, at most, a linear dependence 
with respect to the surface temperature. 

With the use of the principle of superposition, the present solution can be utilized to 
solve problems where various regions of the surface have constant heat fluxes. 

Results of the present analysis indicate that for normal cold-rolling situations during 
steady operation, the penetration of the effects of the surface heating and cooling that 
occur during every roll revolution is usually less than 4 percent of the radius. Further
more, the bulk of the roll is at a uniform temperature that can be calculated quite accu
rately by neglecting all internal temperature gradients. The location of the cooling re
gions relative to the heat-input regions has little effect on the bulk roll temperature in 
this situation. This approximation would be useful for computing bulk roll temperature, 
which could be utilized in future models for determining thermal crowns, but would not 
be suited for determining accurate temperatures at the roll surface. 

Introduction 
With the higher rolling speeds used in modern cold-rolling mills 

for producing flat metal products, the problems of roll cooling have 
become more difficult and more critical. Improper or insufficient 
cooling can lead not only to shortened roll life due to spalling caused 
by thermal stresses, but it can also significantly affect the shape or 
crown of the roll, which could result in poor shape and/or profile. To 
investigate the influence of cooling practice on thermal crowning, it 
is first necessary to develop a good understanding of the thermal as
pects of the roll. Considerable work has been done to develop thermal 
models of rolls. 

Cerni and his co-workers [1,2] studied the thermal-stress problem 
of hot rolling. They provided a transient analytical solution for the 
two-dimensional temperature distribution in a roll subjected to 360 
deg convective cooling and to a line heat source. They did not analyze 
the problem where cooling is present over a portion of the roll only. 
The work of Stevens, Ivens, and Harper [3] provided some interesting 
and significant experimental results relating to the transient tem
perature buildup in rolls. However, their work was conducted for 
specific roll dimensions and speeds. On the basis of this work, Parke 
and Baker [4] developed a finite difference model of the transient 
two-dimensional thermal distribution in a roll. Again, their work was 
conducted for specific roll dimensions and speeds. 

1 Note: It is understood that the material in this paper is intended for general 
information only and should not be used in relation to any specific application 
without independent examination and verification of its applicability and 
suitability by professionally qualified personnel. Those making use thereof or 
relying thereon assume all risk and liability arising from such use or reli
ance. 

Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS 19th AIChE/ASME National Heat Transfer 
Conference, San Diego, Calif., August 6-8,1979. Revised manuscript received 
by the Heat Transfer Division March 24,1980. 

One drawback with computer simulations is that the analysis of 
many different cases and situations can be costly and time-consuming. 
However, analytic solutions offer the advantage of enabling extensive 
parametric studies to be performed conveniently. Furthermore, an 
analytic solution can serve as a convenient and valuable check point 
for computer solutions. An analytic model developed by Haubitzer 
[5] calculates the two-dimensional steady-state temperature distri
bution in a rotating roll that has a prescribed surface temperature. 
However, a more realistic approach would be to utilize surface 
boundary conditions involving convection and prescribed heat fluxes. 
Therefore, an attempt was made to develop an analytic solution for 
the temperature distribution in a rotating roll that would be more 
representative of operating conditions. 

The purpose is to increase the understanding of the thermal aspects 
of the roll and to provide a closed-form solution technique for calcu
lating temperature distributions that is based upon as few simplifying 
assumptions concerning the roll as possible. This paper presents the 
results of this investigation. 

Theoretical Analysis 
Definition of Problem. The problem is to determine the 

steady-state temperature distribution in a long cylinder that rotates 
at a constant surface speed and is subject to certain boundary con
ditions at the surface (Fig. 1). The analysis is based on the following 
assumptions: 

1 The cylinder is long and, therefore, axial heat conduction can 
be neglected. 

2 The rotational speed is constant. 
3 The cylinder is heated and cooled at various locations around 

the periphery, but the heat input and cooling are uniform along 
the axis. 

4 The thermal properties are uniform throughout the cylinder 
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Fig. 1 
loss 

Schematic of rotating roll showing locations of heat input and heat 

and are independent of temperature. 
5 The heat input is supplied by a constant-heat-flux source, and 

the cooling is convective.2 

6 The temperature has reached steady state relative to an Eu-
lerian reference frame [6] that is fixed in space relative to the 
surface boundry conditions and does not rotate with the cyl
inder. The Eulerian approach considers a specific control vol
ume in space and analyzes material that enters and leaves the 
control volume in addition to material occupying the control 
volume at any give time. Therefore, the temperature for any 
control volume in the cylinder does not change with time. 

As a consequence of assumptions 1-4, the temperature distribution 
depends only on the two spatial dimensions r and 6. Assumption 5 is 
made so that the classical differential equation solution technique 
can be utilized. Assumption 6 implies that only the steady-state sit
uation will be considered. 

With respect to a fixed Eulerian reference frame, the differential 
equation that governs the temperature field is [6] 

dT 

bt Eulerian 
+ i7-VT = a V 2 T (1) 

where a = klpc is the thermal diffusivity. The material velocity v is 
a function of position but has a component in the 0-direction only. For 
steady-state conditions and for cylindrical polar coordinates, equation 
(1) becomes 

rdr\ drj r2 

d2T = V dT 
2 d02 ~ aR dd 

(2) 

where V is the cylinder surface speed. Equation (2) is to be solved 
subject to the boundary conditions shown in Fig. 1. These are 

T(O,0) is finite 

ar(fl,fl) 
dr 

0 

hT(R,0) 

0 

O < 0 < 0 

0 < 0 < 0 + a 

0 + a<d<(t> + a + ty 

d> + a + ty<6<2ir 

(3) 

where h is the heat-transfer coefficient, which is assumed constant. 
The problem, as defined, is to solve for the temperature difference 
between the roll and the coolant reference temperature (that is, if the 
coolant temperature were To and the actual roll temperature where 
T*, then T = T* - To). Therefore, the problem is to determine the 
temperature, T, which satisfies both the differential equation in 
equation (2) and the boundary conditions in equation (3). 

Problem Solution. The classical approach of separation of 
variables cannot be used in its usual form but a more general version 
of the technique will work [7]. Assume that a solution of the differ
ential equation can be represented as 

T = 3l(r)ein (4) 

where Ji(r) is a complex function. Substituting equation (4) into 
equation (2) and cancelling out common terms yields the differential 
equation which must be satisfied by 31. 

' + rft'-\i — r2 + n 2 | # = 0 
Ra 

(5) 

where the prime indicates differentiation with respect to r. The 
problem has been reduced to determine the solution of the ordinary 
differential equation (5). Using the following change of independent 
variable, 

Equation (5) becomes 

X dx* 

dJi 
+ x (ixz + n2)X ' 

dx 
0 

(6) 

(7) 

The solutions to equation (7) may be found in reference [8] and are 
called Kelvin functions.3 The two general solution forms are 

Jli = bern (x) + i bein (x) 

-7?2 = kern (x) + i kein (x) 
(8) 

From the general properties of Kelvin functions and from the 
boundary condition that the solution must remain bounded as r (and 
x) approaches zero, the general solution form K2 cannot be included 
because its value becomes infinite as r (and x) approaches zero. The 

2 The only restriction is that the heat input and heat loss be linear functions 
of temperature. 

3 Kelvin functions are related to Bessel functions with a complex argu
ment. 

- N o m e n c l a t u r e . 

a = thermal diffusivity, ft2/hr 
an = complex constant 
bn = an + (—l)nan, iin> l ; o 0 , if n = 0 
c = specific heat, BtuAb-°F 
Cn = i[an - ( - l ) " a n ] 
em = real constant of Fourier series for the 

surface boundary conditions 
/ = function representing boundary condition 

at roll surface 
gm = real constant of Fourier series for the 

surface boundary conditions 
h = heat-transfer coefficient for cooling re

gion, Btu/hr-ft2-°F 
i = V^l 
k = thermal conductivity, Btu/hr-ft-°F 
m = index for an infinite series 

n = index for an infinite series 
Pn = real coefficient of infinite-series solu

tion 
Q = heat-input rate defined by equation (13), 

Btu/hr-ft2 

q = heat-input rate per unit area, Btu/hr-
ft2 

R = outside radius of roll, ft 
r = radial coordinate 
S„ — real coefficient of infinite-series solu

tion 
T = temperature difference defined as T* T0, 

op 
To = coolant temperature, °F 
T* = actual roll temperature, °F 

Tbuik = bulk-roll temperature difference, 
op 

t = time, hr 
V = roll-surface speed, ft/hr 
v = roll-velocity vector, ft/hr 
x = independent variable defined by equa

tion (6) 
a = angle of separation between the heat-

input and the cooling regions, radians 
6 = angular coordinate 
A„ = parameter defined in equation (12) 
p = roll density, lb/ft3 

0 = angle for heat input, radians 
ty = angle for convective cooling, radians 
V = gradient operator 
V2 = laplacian operator 
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solution to the orginal differential equation (2) may be written as a 
superposition of functions of the form in equation (4), i.e. 

T(r,6) •• £ °n bern \\ — r \ + i bein \\ — r 
IV Ra I \ V Ra j 

(9) 

where an is a complex constant. Expanding equation (9) yields 

u I F™ \ in 
bern \ — r cos (nd) 

\ V Ra I 

T(r,d) = b0 + £ bn 
n - 1 

- bein -r\ sin (nd) + cn bern 

+ bein 

Ra 

nV 

r\ sin (nd) 

r\ cos (nd) (10) 

where bn and c„ are real constants given by 

an+ ( - l ) "a n , i f n > l ; 
bn 

ao, if re = 0 

cn = i(an - ( - l ) n a „ ) 

It should also be noted that the following relations for transforming 
the Kelvin functions of imaginary arguments and negative orders have 
been used: 

i bern(x) - sin bein (x) 
\ 2 / 2 / 

'3nir\ , . . . . firnr) , , ' 
bein(x) + sin 1 bern (x) 

ber-n(ix) = in 

bei-n(ix) = - J ' 

The problem has now been reduced to determining the constant, 
real coefficients, bn and c„, in equation (10) by using the boundary 
condition at the surface, r = R. Equation (10) is general in that it is 
the solution form for any surface-boundary condition. It should also 
be noted that the solution is in the form of a Fourier series with respect 
to 8. Therefore, the surface gradient dT/dr | r=# represents a Fourier 
series as a function of 6. The boundary conditions can be satisfied by 
expanding the right-hand-side of equation (3) in a Fourier series 
utilizing the expression for T, given by equation (10), and equating 
the coefficients of similar trigonometric functions. 

Representing the right-hand side of the boundary condition in 
equation (3) with a Fourier series yields 

/«?) = 

r - < j o ; 0 < d < <f> 

| o ; 4><6<<t> + a 

\hT(R,6); 4> + a<8 <4> + a + -% 

M) ; <t> + a + V < 6 < 2-w 

(11) 

and 

where 

f(d)=^+ £ e„ 
£ m = 1 

cos (md) + gm sin (md) 

em = - f * f (6) cos (md) dd 
W JO 

Sm = ~ f 2 ' f(B) sin (md)de 
IT » / 0 

The coefficients em and gm are determined by substituting the ex
pression for f(8), given by equation (11), and breaking the limits of 
integration to coincide with the definition oif(d); i.e., 0 to <j>, <j> to <t> + 
a, etc. 

The left-hand side of equation (3) is obtained by taking the deriv
ative of the temperature representation in equation (10) and evalu
ating it at the surface. 

The relationships for determining bn, cn, n = 0 ,1 ,2 , . . . are obtained 
by equating the Fourier series for the surface heat flux to the Fourier 
series generated in equation (11). The coefficients of like trigonometric 
functions must be equal. This procedure represents an extension of 
the work of Kantrovich and Krylov who use the technique to solve 
Laplace's equation on a circular domain where the boundry conditions 
are mixed [9], 

The relationship for determining the b„, cn, n = 0 ,1 , 2 , . . . are 

m = 0 

bein(\n) 
1 = Pi * + £ 

n = l 
Pn+1 + S n + 1 " 

bernCkn) 

X [sin[n(o! + $ + * ) ] - sin[n(o: + <£)]] 

bei„(\n) 

n 

m> 1 

bern(\) — sn 
[cos [n(a + 0 + *) ] - cos[n(a + 0)]] 

sin(m<j>) P\ 

m<j> 

+ £ 
ra=l 

[sin [m(a + <t> + * ) ] - sin [m(a + 0)]] 

Pn+l + <S„+i 
beiniXn)] r ° + * + * 

6er„(X„)J Ja+4, J * a 

i*4 

cos (nd) cos (md) dd 

Sn+l — Pn+l 
bei(\n) 

ber(\n 

•ah C 
.„)] J a + * 

+ 0+* 
sin (nd) cos (md) dd) 

irk\„ 

• cos(m0) 

m<j> 

+ £ 
n=l 

berm'(\m) beim'(\m)] 

hR m berm(\m) m berm(\m)\' 
p 

[cos [m(a + <j> + * ) ] — cos [m(a + $)]] 
m 

(12) 

Pn+l + S„+i 

Sn+l ~ Pn+l 

bein(\n)] /"•«+«+* 

ber„(X, 

bein(\n)] 

bern(\n)\ 

irk\m 

n) p + * 
n)\ J 0 + * 

X 
cos (nd) sin (md) dd 

»+*+* 

+ - hR 

sin (nd) sin (md) dd 

' berm'(\m) beim'(\m] 
>->m+l ~ ~ : rm+i 

berm(\n) berm(\m) 

where 

•Pn+ l 

•Sn+l 

qo<i>/h 

Cn 

qo<t>/h 

1 r. 

bern 

bern 

(K) 

(K) 

beim'(Xm) = — beim(\m) + ~ [beim+i(\m) - berm+i(\m)], 
A m V 2 

m 1 
berm'(\m) = — berm(\m) + -— [6erm+i(Xm) + beim+i(Xm)] 

Am V 2 

The relationships in equation (12) determine the coefficients, bn 

and c„, which can then be substituted into equation (10) to determine 
the temperature distribution. The coefficients are coupled in equation 
(12) because of the particular boundary condition utilized. Conse
quently, in theory, equation (12) represents an infinite set of algebraic 
equations that must be solved simultaneously to determine the infi
nite number of unknowns. For practical applications, only a finite 
number of terms are retained in the infinite-series solution. Therefore, 
if 40 terms are felt to be necessary, only 40 terms of equation (12) are 
utilized to calculate the 40 coefficients. In the limit, the more terms 
retained, the better the accuracy of the solution. For boundary con
ditions involving specified temperatures or heat fluxes, the rela
tionships analogous to equation (12) are uncoupled and the coeffi
cients can be determined explicitly. 

Special Case: a—-0,0-*O, and ¥—2ir. In the case where the area 
of the heat input is reduced to a point and the remainder of the cyl
inder is cooled by convection, equation (12) becomes uncoupled. 
Taking the limit of equation (12) as a-»0, ty^"27r, 0—>-0, and go-*00 

such that the product ofqo<t> remains finite, Equation 12 can be solved 
to provide the following: 

60 = 3-
2irh 
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> 1 

bm = 
-irhD 

Q 

irhD 

hR 

k\m 

hR 

berm'(\m) + berm(\m) 

beim'(\m) + beim(\m) (13) 

Q = lim (go0), 

D = — Xm berm'(\m) + berm(\m) 
hR 

hR 
Xm beim' (Xm) + beim (Xm) 

and Xm is defined in equation (12). The expression for this special case 
agrees with the solution given by Cerni [1] for the steady-state sit
uation. However, Cerni treats this special case only and does not 
consider the problem where regions of the roll periphery have no heat 
transfer. 

Results and Discussion 
To provide numerical samples, a computer program was written 

to solve the system of algebraic equation (12) for various values of the 
input parameters. It should be observed that the parameters h, R, k, 
V, and a enter the problem as two dimensionless groups \JVRIa and 
k/(hR). The heat-input rate can also be eliminated by defining a di
mensionless temperature as ThIQ, where Q equals qo4>. Consequently, 
information concerning the shape and behavior of the temperature 
distributions can be obtained without specific knowledge of the 
heat-transfer coefficient, h, or the heat-input rate, go- However, these 
quantities would have to be determined and specified if actual cyl
inder temperatures were desired. The best results were obtained 
whenever 40 terms (n = 40) were retained in the expansion. Therefore, 
81 coefficients were calculated. Theoretically, the accuracy should 
increase if more terms are retained; however, numerical problems were 
encountered in evaluating the Kelvin functions whenever n was 
greater than 40. 

Dimensionless temperature distributions were obtained for various 
combinations of input parameters. An exhaustive parametric study 
would be too lengthy to include in the present study; therefore, only 
representative cases will be presented. Figures 2-5 show the surface 
temperature as a function of angular position for various values of the 
spray location. The figures indicate that as the location of the cooling 
spray is moved farther from the point of heat input, a cusp begins to 
form at the point where cooling is initiated. Furthermore, for the 
parameters considered, the surface-temperature variation around the 
periphery dissipates quickly into the cylinder interior. 

This fact is shown more clearly in Figs. 6 and 7, which present 
temperature distributions as functions of the radius for two locations 
of the cooling spray. In both situations, the penetration of the sur
face-temperature variations is approximately 6 percent of the radius. 
Therefore, 94 percent of the cylinder remains at a constant uniform 
temperature under steady-state conditions. These examples are for 
cases involving relatively slow rotational speeds as compared with 
speeds that typically occur during cold-rolling situations. For rolling 
situations involving higher speeds, the penetration would be signifi
cantly less. Conversely, for lower rotational speeds the penetration 
would be greater. 

In determining thermal crown in a roll, the primary effect would 
come from the bulk roll interior. The surface variations would have 
a tremendous influence on the surface thermal-stress pattern and 
subsequent spalling characteristics but would be insignificant relative 
to the determination of thermal crown. An estimate of the penetration 
of the surface-temperature variation can be obtained. Considering 
the form of the solution indicated in equation (10) and the relation
ships in equation (12) that determine the coefficients, it is seen that 
the radial dependence of the temperature can be expressed as a ratio 
of Kelvin functions evaluated at the desired radial location to the 
Kelvin function at the surface. Therefore, the radial dependence will 
be proportional to terms like 
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T(r,B) • 

bern\Xn-\ 

(14) 
bern(\n) 

For values of X;, that are large and for values of r close to R, the 
asymptotic expansions for the Kelvin functions with large argument 
may be used to obtain [10] 

beriKR, 
bern(\n) 

Wv/5 (r/Rl) 
(15) 

The radial temperature dependence is negligible whenever the value 
of the exponent is less than minus 3. Therefore, if 

7i(H<-3' V2 
or, using the definition of X„ in equation (12), 

(16) 

(17) 

then the temperature is essentially the roll centerline temperature. 
For example, when n equals 1 and y/VR/a equals 100 (which is rep
resentative of commercial cold-rolling situations), the influence of 
the surface-temperature variation is negligible at a distance in from 
the surface of 4 percent of the radius. 

Another fact illustrated in Figs. 2-5 is that for the conditions con
sidered, the value of the centerline temperature changes very little 
whenever the spray location is changed. This is better illustrated in 
Fig. 8, which presents the roll-centerline temperature as a function 
of the spray location angle, a, for typical values of operating param
eters. The figure indicates that for the parameters selected, the cen
terline temperature is rather insensitive to cooling-spray location 
except for the cases where y/VR/a and k/(hR) have low values. For 
typical cold-rolling situations involving a 24 in. dia. (0.6 m) steel roll 
with a surface speed of 3000 ft/min (1.52 m/s) and a heat-transfer 
coefficient of 600 Btu-hr-ft2-°F (3410 W/m 2 -K) , the dimensionless 
parameters y/VR/a and kl(hR) have values of 600 and 0.043, re-

. spectively. Therefore, from Fig. 8, typical cold-rolling situations are 
characterized by the fact that for steady-state conditions, the roll-
centerline temperature, and consequently the bulk of the roll, is rel
atively insensitive to the cooling-spray location. It would, however, 
be affected by the area over which cooling is applied. 
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For most cold-rolling situations, the bulk of the roll cross section 
is at a uniform temperature, which is the centerline value. The cen
terline temperature is given in equation (10) by the value of the 
coefficient, bo- Using equation (12), the asymptotic expansion for 60 

for large values of the dimensionless quantity (\JVR/a) [k/(hR)\ can 
be written as 

Oo = — + 0 (18) 

Whenever the heat input reduces to a line source, the product qo4> 
should be replaced by Q, as defined in equation (13). It is interesting 
to note that the first term of the expansion is just the steady-state bulk 
temperature that would be calculated if all internal temperature 
gradients were neglected. In this situation for steady-state conditions, 
the heat input equals the heat output. Therefore, 

qoR4> = hR*TMk (19) 

where Tbuik is the bulk temperature.4 Solving for the bulk temperature 
yields 

Tbulk • 
. <?o0 

(20) 

To determine the reasonableness of the assumption of neglecting 
all internal thermal gradients, the difference between the centerline 
temperature and the bulk temperature was computed for various 
operating conditions. The percentage difference is presented in Fig. 
9 as a function of the parameter (y/VR/a) [k/{hR)]. The results in
dicate that the error associated with using the simplified bulk tem
perature to represent the roll-centerline temperature is less than 10 
percent whenever the parameter (V VR/a) [kl(hR)\ exceeds 10. For 
the typical cold-rolling situations described previously, the value of 
this parameter is usually greater than 26. Therefore, from Fig. 9, the 
error associated with using the bulk temperature in this situation 
would be less than 5 percent. 

C o n c l u s i o n s 
The exact solution for the two-dimensional steady-state temper

ature distribution in a rotating cylinder roll subject to a constant heat 
input and a convective-cooling boundary condition has been devel-

4 The fluid temperature has again been subtracted so that Tbulk represents 
a temperature difference. 
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oped. The solution technique is an extension of the standard method 
of separation of variables and results in an infinite-series solution 
form. The same solution method can be utilized to solve problems 
involving any combination of surface boundary conditions if the 
boundary condition is at most a linear function of the surface tem
perature or temperature gradient. With use of the principle of su
perposition, the present solution can be utilized to solve problems 
where various regions of the surface have constant heat fluxes. 

Results of the present analysis indicate that for normal cold-rolling 
situations under steady-state conditions, the penetration of the effects 
of the surface heating and cooling that occur during every roll revo
lution is usually less than 4 percent of the radius. In addition, the bulk 
of the roll is at a uniform temperature, the value of which can be cal
culated quite accurately by neglecting all internal temperature gra
dients if (\/~VRla) [k/(hR)\ is greater than 10. This approximation 
is insensitive to the location of the cooling-water sprays relative to the 
heat-input region. The approximation would be useful for estimating 
bulk-roll temperatures that would be used to compute thermal roll 
crowns. The approximation is not accurate for predicting tempera
tures at the roll surface, which are very dependent on the particulars 
of the heat input and cooling-spray locations. Therefore, the bulk-roll 
approximation would not be suited for estimating thermal stress at 
the roll surface, which could contribute to spalling. 

1000 

JvR JL 
V a hR 

Fig. 9 Difference between centerline temperature and bulk temperature 
based on negligible internal gradients 
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A Methodology of Predicting Cavity 
Geometry Based on the Scanned 
Surface Temperature Data — 
Prescribed Heat Flux at the Cavity 
Side 
A methodology is developed to predict a rectangular cavity lying underneath the surface 
of a plane wall that dissipates heat by convection to the surroundings. This is also the sur
face whose temperature is scanned. For a prescribed constant heat flux applying on the 
cavity surface the cavity depth can be predicted by equating the heat in and out of the sys
tem. An analytical procedure is developed that permits checking of the assumed cavity 
wall position based on comparison between the calculated and the measured surface tem
peratures. The method is also extended to the prediction of holes in a three-dimensional 
body (parallelepiped). Examples are provided to illustrate applications. 

I n t r o d u c t i o n 
Of the three types of inverse heat-conduction problems found in 

the heat transfer literature [1-9], the least investigated is one that 
involves a partially unknown system geometry. The purpose of the 
problem is to determine this geometry based on the additionally 
measured temperature on the surface. This inverse problem received 
attention only recently because of its application in nondestructive 
testing using infrared scanning. 

Unlike the other problems, the inverse problem just mentioned can 
not be solved by conventional methods. While the problem itself was 
originated from the infrared scanning technique which has often been 
considered as an alternative to X-ray computerized axial tomography 
(CAT) [11-16] because the mechanisms involved in these processes 
are different, the X-ray tomography analysis can not be used in the 
solution of the inverse problem [10]. On the other hand, methods in 
applied mathematics (e.g., conformal mapping) are of little help either 
[9]. Only a numerical scheme was found useful in the literature [9]. 
The method used was a forward searching scheme to determine the 
cavity top; this was followed by a trial-and-error procedure to check 
the cavity wall position. The method is convenient when the cavity 
has a prescribed wall temperature, but is useless if the cavity has a 
prescribed heat flux (to be explained later under Example and Dis
cussion). For this reason, it is felt desirable to develop a new method 
that is specifically designed to treat the latter problem. It is the pur
pose of this paper to describe such a method. 

D e s c r i p t i o n of P r o b l e m 
The basic system under investigation is depicted in Fig. 1. A plane 

wall having a rectangular cavity in the bottom surface is scanned by 
using an infrared scanner in order to measure the temperature on its 
top surface as it dissipates heat by convection to the surroundings. 
The lower boundary is subjected to a constant heat flux. The right 
boundary is adiabatic, which is physically valid if L is large compared 
to w. Because of temperature symmetry it is possible to use only one 
half of the system for analysis. This also permits the use of an adia
batic condition at x = 0. It is further assumed that the test body is 
homogeneous and the system is in steady state. There is no heat source 
or sink inside the system. Variations of temperature in the z direction 
(perpendicular to the plane of Fig. 1), as well as the thermophysical 
properties with temperatures, are ignored. Both the convective 

coefficient and the ambient temperature are treated as constants. The 
purpose of the problem is to determine the cavity size based on the 
scanned temperature on the surface. 

M e t h o d o l o g y 
For a constant and uniform heat flux applied on the lower bound

ary, an analytical solution is convenient to predict the cavity. The 
cavity depth must be determined first; this can be done by equating 
heats in and out of the system. Since the top surface temperature is 
measured, and the left and right boundaries of the system are adia
batic, it follows that the depth of the cavity d is related to the top 
surface heat dissipation Qt by 

d = (Qt/f)-L, f*0 (1) 

where / represents the constant heat flux imposed on the lower 
boundary. 

With the cavity depth found, the cavity wall position can be de
termined by using an intrinsic matching scheme that utilizes one 
portion of the observed surface temperature profile to predict and 
match the remaining surface temperature profile. In more specific 
terms, because of the irregular geometry, the entire system can be 
divided into two regions along an assumed cavity wall (see Z\ and Z% 
in the rightmost figure of Fig. 2). Then; taking Z\ first in the analysis, 
it is possible to determine the heat flux across the dotted boundary 
based on the measured temperature on the top surface of Z\. This 
cross heat flux is subsequently used as a portion of the boundary 
conditions in problem Zi to determine its top surface temperature. 
The assumed wall position is correct if this calculated temperature 
matches the measured temperature. In practice, since the heat flux 
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is evaluated across the dotted boundary, and the cavity wall has a 
prescribed heat flux, a situation of mixed boundary conditions will 
not occur in problem Z2 [17]. Although a small-scale trial-and-error 
is still needed in the solution to recheck the (cavity) wall position and 
since this wall position is closely related to where the peak tempera
ture is found on the surface, the initial trials can be made with good 
approximation. This point will be further examined later in an ex
ample. 

Analys i s 
The system under investigation is presented in Fig. 2. The problem 

can be formulated in terms of dimensionless groups with the governing 
equation given as, 

V2[/ = 0 

where 

u = [/($,,) 

subjected to boundary conditions: 

at/(a>,n) fL 
— = , 0 < ri < 5 

d£ kTA 

(2) 

dt/(0,7i) 

a* 
dU(l,ri) 

at 
dU(£,8) 

irq 

at/(f,Q) _ 

= 0, 5 < 7) < IX 

= 0, 0 < J? < IX 

fL 

kTA
 ? 

- — , co < £ < 1 

- B i U(£,ii), 0 < £ < 1 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

In the above equations the dimensionless groups are defined as fol
lows: 

JT T(x,y) - TA x y w d £ n . hL 
U = , t = —,J) = —,&) = — , 0 = — , u = — , B i = — 

TA L L L L L k 

The problem U can be divided into two subproblems using the 
superposition technique, 

The subproblem W satisfies the governing equation, 

v2w = o 

(9) 

(10) 

dW(w,y) 

dW(0,ri) 

awq.r;) 

aw(£,o) _ 

dr, 

= 0, 0 < t) < 8 

= 0, 6" < TJ < ji 

= 0, 0 < ?? < ix 

fL 
--—, 0 < £ < c o 

kTA 

- — , <o < £ < 1 

(11) 

(12) 

(13) 

(14) 

(15) 
kTA 

- B i W ( ^ ) , 0 < £ < 1 (16) 

A pictorial presentation of these conditions is given in the middle 
diagram of Fig. 2. 

The subproblem Z satisfies the governing equation 

V2Z = 0 
and the boundary conditions: 

dZ(w,r]) 

d£ 

aZ(0,ri) 

a£ 
dzg.n) 

a£ 
dZ(£,&) 

a?; 

az(g,o) 
a?/ 

(17) 

, 0 <7) < 

= 0, 5 < 7/ < /i 

= 0, 0 < JJ < n 

= 0, 0 < £ < co 

= 0, co < £ < 1 

BiZ(£,;i0, 0 < £ 

6 

< 1 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
dZ(tlx) 

dr; 

Fig. 2 again depicts these conditions pictorially. 
In the solution of problem W, the insulated cavity wall enables one 

to drop the £ dependency in the analysis. The top surface temperature 
is uniform and can be derived by equating equations (14-16), 
giving, 

W(ix)=fl(hTA) (24) 

This uniform temperature distribution is somewhat unexpected, but 
is necessarily true based on the constant h and TA assumed in the 
analysis. This point can be readily verified by using an electric 
analogy. 

As has been discussed previously, problem Z can be split into two 
problems, Z\ and Z2. Let the heat flux across the dotted boundary be 
denoted as g, Z\ (£,r/) can be derived using the separation of variables 
technique as: 

1 2(X„2 + Bi2) 
ZAln) = T. 

n - i X„ sinfeX„o) (/x — 5)(X„2 + Bi2) + Bi 
u-b 

and the boundary conditions: 
X cosfaXn£cosX, ,fo-«) f" g(v) cos\nvdv (25) 

.Nomenclature. 
Bi = hL/k 
C„ = equation (30) 
d = depth of cavity 
/ = heat flux 
G = equation (28) 
g = cross heat flux 
h = convective coefficient 
k = thermal conductivity 
L = length of system in x direction 
£ = thickness of system in y direction 
Q = total heat flow per unit depth of 

system 
T = temperature 
U = \T(x,y) - TA]/TA 

W - W{^,TI), see equation (24) 

w = width of cavity 
x,y = independent variables 
Z = Z(Z,ri) 
S = d/L 
V =y/L 
Xm , \„ = eigenvalues 
H = £IL 

v = dummy variable of integration 
•Z = x/L 
to = w/L 

Subscripts 

A = ambient 
S = surface 
t = total 
1,2 = regions 
I, II, III, IV = quadrants 
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which is valid for 0 < £ < o>, 5 < r\ < \i. Xn are the roots of X„ tanX„ (/i 
- 6) = Bi. 

The temperature at the top surface can be found by substituting 
p. for »/ in the above equation and rewriting it as follows: 

C O S A „ ( M - 8 ) 2(X„ 2+Bi 2 ) 

037 

Zi(H,n) = E 
n=i Xnsmh\nco (fj, — 5)(Xn

2 + Bi2) + Bi 

g(v)cos\nvdv (26) 
o 

where 0 < £ < to. 
The cross heat flux term g(v) in the above equation is now to be 

determined. This can be done by replacing the integral by a summa
tion using Simpson's rule as: 

A " , 
f * g(v)cos\nvdv = — [Gi + 4(G2 + G4 + . . . + Gm - i ) 

«/o 3 

where 
+ 2(G3 + G 5 + . . . + Gm-2) + G„ 

Gi =g[(i - D(Ai/)]cosX„(i - l)(Av) 

(27) 

(28) 

and J = 1, 2 , . . .m 
With this substitution, the terms in equation (26) can be regrouped 
as follows: 

Zi(£,/t)=g(0) E C„ cosh\n^+ig(Av) E Cn coshKZcos\n(Au) 

+ 2g(2Av) E Cn cosfeXn£cosX„2(AW + . . . 
n=i 

+ g[(m - l)(Ai/)] E C„ cos/jX„£cosX„(m - 1)(AK) (29) 
n = l 

where 

(AJ/ )COSX„(AI-S) 2(X„ 2 +Bi 2 ) 
(30) 

3\nsmh\nu (n i -5)(X n
2 + Bi2) + Bi 

g(v) can then be solved using the method of simultaneous linear 
equations. It is noted that, to make the matrix multiplication com
patible in the solution, the number of unknowns in g must be chosen 
to be equal to the number of Z\ used as inputs. 

The solution of problem Zi can again be made using the separation 
of variables technique. The top surface temperature distribution is 

^fco = i —^ w±' + w . 
sin/iXm(l - <o) M(Xm

2 + Bi2) + Bi 

X cosh\m(l — £)cosXmfj 
/ / L I C x \T7^~T~ sm^™& ~ I g(y)cos\mridri 
\kTA Xm Jh 

(31) 

which is valid in the range oj < £ < 1. The eigenvalues Xm are roots 
of 

XmtanXmfi = Bi 

The crosswise heat flux determined earlier can be used together with 
g(v) = —(/L/feT/i) for 0 < 7] < 5 to solve the integral in equation 
(31). 

Example and Discussion 
A numerical experiment was made to validate the methodology 

presented in this paper. Gaussian elimination was used to compute 
the temperatures in plane walls having specified cavity geometries 
and heat fluxes. The computed surface temperatures were subse
quently used as inputs to an inverse problem to predict the cavity 
geometry. A sample case is presented in Fig. 3 where test conditions 
are summarized in the legend. 

As is shown in the figure, the hot spot on the surface is located near 
the cavity wall, which is quite unexpected. It was shown in a previous 
paper [9] that, for a prescribed cavity temperature, the hot spot was 
located at the cavity center. This displacement of the hot spot in the 
present case can be ascribed to the constant-temperature W term, 

Fig. 3 Surface temperature distribution for a sample test 
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Fig. 4 Recheck of cavity wall position for problem given in Fig. 3 

represented by equation (24), and the additional contribution due 
to Z in equation (9). This latter contribution raises the temperature 
near the cavity wall because of the additional heat flux crossing the 
wall. 

Following the methodology given, the cavity depth was predicted 
using equation (1). This was followed by the determination of the 
cavity width which involved a series of trials of wall positions. To il
lustrate the trend of data in the searching process, the data in Fig. 3 
were used as inputs to evaluate a dimensionless temperature differ
ence between the calculated and the measured temperatures on Zi 
as shown plotted in Fig. 4. If the tested cavity width is exact, the di
mensionless temperature difference falls within a narrow band 
stretching between —0.08 to 0.11 percent. This is identified by tick 
marks drawn on the right-side scale of the figure. It is noted that this 
good result was obtained by using only five terms in the Simpson's 
rule (see equation (27)). Correspondingly, only five heat flux values 
were generated along the dotted boundary and used in the analysis 
ofZ2 . 

An underprediction of cavity width by one mesh size (Ax) yields 
evaluated surface temperatures in the range of 4/12 < x/L < 1 dif
ferent from the measured values (see open circles). The trend of data 
is totally reversed if the cavity width is overpredicted by one mesh 
size (see closed circles). This drastic change of trend can be explained 
by referring to the surface temperature plot shown in Fig. 3. The di
mensionless temperature slope near the cavity wall, between points 
(x/L) = 0.25 and 0.33 is 0.05225, which is fairly close to that found 
between points (x/L) = 0.1667 and 0.25 (value: 0.0635). However, the 
slope between points x/L = 0.33 and 0.4167 is 0.00106, which is 80 
percent lower than needed (0.05225). As a result, the calculated 
temperatures right to the predicted (cavity) width for the overpred-
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icted case shows a drastic change in slope from the underpredicted 
case. Such a trend reversal is highly desirable as it provides a clue to 
where the cavity wall is located in the searching process. 

A point of interest is the comparison between the methodology 
developed in this paper and the one reported in [9], Recalling that the 
method used in [9] involved a numerical searching process to deter
mine the cavity top, this was followed by a recalculation and matching 
of the surface temperature based on the assumed cavity wall. The 
method was shown to be convenient from the application standpoint. 
Since the cavity temperature was specified in [9], it is natural to use 
this temperature as a clue in the prediction process. However, in the 
present case, it is the surface heat flux that is specified at the cavity 
side; the cavity temperature is not known a priori. Experience has 
shown that the specified heat flux can not be used to predict the cavity 
using the numerical scheme. The problem lies in the fact that, near 
the cavity top, the heat flow is close to being unidirectional; q is, 
therefore, invariant there in the y direction. The resolution of using 
q to identify the cavity top is thus poor. 

On the other hand, it still appears to be possible in the present 
problem to recalculate and match the surface temperatures using the 
numerical method in an effort to search for cavity width once the 
cavity depth is found. Such an approach turns out to be inconvenient. 
Since none of the boundaries has a specified temperature in the 
original problem, an ill-conditioned situation arises, which calls for 
an infinite number of steps to reach a convergence in the iterative 
solution [18]. Although the Gaussian elimination to solve simulta
neous equations is still valid, it can pose a problem to the computer 
storage if the tested system is large. The proposed methodology is, 
therefore, more economical and is well-suited for the problem 
given. 

Attention is now directed to the error analysis. Because of the re
liance of the present solution on the exact analysis, a detailed error 
analysis calls for complicated statistical procedures of least squares. 
In practice, the uncertainty in the measurement of surface tempera
tures is probably Gaussian, which will lead to a Gaussian error dis
tribution in the cavity prediction. It is felt that this error analysis will 
be one of the important tasks of the future experimental studies and 
the present paper is primarily devoted to the presentation of meth
odology; a simplified analysis is attempted below that is focused on 
the effect of the Biot number used in the analysis. 

An overestimation of h in the Biot number will increase Qt, thus 
leading to an overprediction of the cavity depth d (see equation (1)). 
Unfortunately, for the present problem it is not possible to use the 
temperatures at the cavity center and the system edge to estimate the 
h value (such an estimation was, nevertheless, possible in [9]). This 
can be illustrated by referring to Newton's law, 

(Ta/TA)-l=f/(hTA) (32) 

which is strictly valid where Ts is measured at a point remote from 
the cavity wall. Under such a condition, the direction of heat flow is 
everywhere perpendicular to the bounding top and bottom surfaces, 
and a condition can not be realized everywhere inside our system. To 
use equation (32) to estimate h is inaccurate as it can be shown using 
the example illustrated in Fig. 3. 

If the surface temperature at the cavity center is used in equation 
(32), (f/hTA) = 0.3453, which represents a 15.1 percent overprediction 
(correct value 0.3). By using the temperature at the system edge, this 
parameter is dropped down to 0.3381, still an unsatisfying 12.7 percent 
overprediction. Physically, this simple analysis reveals that the heat 
transfer is not unidirectional along the total thickness. Reliance on 
the simple estimation as that which equation (32) provides is certainly 
inadequate. It should be further noted that one may argue that a small 
cavity could probably lead to a better estimation of h based on the 
surface temperature at the system edge. Such a statement is logically 
unsound because the cavity size is unknown a priori. 

Extension to Three-Dimensional Systems 
An attempt is made to extend the foregoing analysis to the pre

diction of a cavity in a three-dimensional body (parallelepiped) as 
shown in Fig. 5. It is noted that, because there are four surfaces now 
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Fig. 5 Partition of system into four quadrants in a three-dimensional anal
ysis 
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Fig. 6 Prediction of hole in a three-dimensional sample test 

dissipating heat by convection, the boundary conditions for this new 
problem have been changed to the extent that the previously devel
oped, two-dimensional analysis can no longer be used here without 
modifications (this point will be further elaborated on later). Nev
ertheless, equation (1) is still valid and this equation will be shown 
to be useful to the solution of a special class of problem that does not 
rely on a complicated analytical procedure. 

For the system shown in Fig. 5, heat can be freely dissipated from 
four exposed surfaces. The observed surface temperatures exhibit four 
peak points, one on each surface (see the temperature plots sur
rounding the test body in Fig. 6). Unlike the two-dimensional prob
lems studied before, these peak points are located somewhere near 
the cavity center. Based on this characteristic, sectioned planes can 
be erected that pass through these peak points and are perpendicular 
to the cavity boundary as shown by the dash-dotted lines marked in 
Fig. 5. With the help of these lines the entire system can be divided 
into four quadrants as labeled by Roman numerals in the figure. It 
is now possible to consider these lines as adiabatic planes and use 
equation (1) to write 

a + h = (Q,//) 

b + c = ( Q I I / / ) 

(33) 

(34) 
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d + e = (Qm/f) (35) 

f + g=(Qiv/f) (36) 

where Q's represent the total heat dissipation from the surfaces inside 
each quadrant. In addition, four equations can be written based on 
geometry as follows: 

a + b = e + / (37) 

c + d = g + h (38) 

| o - / | = u (39) 

\g-d\=v (40) 

where u and u can be found experimentally by comparing peak-
temperature locations on opposite surfaces. 

It is clear from equations (33-40) that eight equations are available 
to solve for eight unknowns a through h. In practice, one of the 
equations among (33-36) is dependent, which can be proved by con
sidering a special case when u = u = 0. With the shortage of one con
dition, it is necessary to revert to the exact analysis we had before to 
generate another relation. While it is still possible to do so analytically, 
the analysis will become quite lengthy. This can be visualized by re
ferring to Fig. 5 where in the first quadrant the vertical (outside) 
surface now becomes a convective boundary. Hence, additional su
perposition is needed in dealing with sectioned regions inside this 
quadrant. Recognizing that such an analytical procedure involves no 
new methodology other than the one already presented, it will be 
shown below that a simple technique can be developed that represents 
an extension of equation (1) and is yet powerful enough to deal with 
a special class of three-dimensional problems. 

In the event that two adjoining walls of the hole are located equi
distant from the outside surfaces, a situation that is readily detectable 
from the surface temperature symmetry near the corner, an additional 
adiabatic plane can be placed inside this corner. In this way a simple 
heat transfer analysis permits the determination of one hole dimen
sion among the eight unknowns. This can be illustrated by referring 
to the example given in Pig. 6, in which a numerical experiment is 
provided to generate the surface temperature profiles as shown by 
the plots surrounding the test body. These temperatures are, in turn, 
used as inputs in equations (33-40) to predict the cavity. For the 
sample test shown, the additional adiabatic plane is located at the 
lower left corner. This permits the evaluation of (e/L) = 0.2275 based 
on the analysis of heat dissipation from the left portion of the bottom 
boundary. This e value represents an overprediction by 1.1 percent. 
Using this predicted e, values of a{=f), c(=h) and d(=g) can be 
computed respectively as 0.1941,0.3058 and 0.2725. These values are 
accurate to within 1.3 percent; errors are primarily numerical. 

C o n c l u d i n g R e m a r k s 
For a convective boundary appearing on the cavity side the problem 

becomes more complicated because none of the heat flux or temper
atures are available at this side of the surface. A pattern recognition 
scheme is useful for this problem as reported in [19]. 

It is well known in nondestructive testing using infrared scanning 
that the uncertainty in flaw detection is larger for small cavities lo
cated deep below the surface. With the methodology presented in this 

paper, this observation takes a new perspective. A small cavity reduces 
the width of Z\ thereby making the evaluation of cross heat flux less 
accurate. In actual testing, a small cavity will also smear out the sur
face temperature causing the matching of surface temperatures on 
Z2 to be less conclusive. 
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iicroconwectife Thermal 
Conductiwity in Disperse Two-Phase 
Mixtures as Observed in a Low 
Velocity Couette Flow Experiment 
Eddy transport associated with microscopic flow fields in shearing two-phase flows was 
investigated. Although such microconvective effects are expected to be present in all dis
perse two-phase flows, usually they are masked by other collateral mechanisms and could 
not be studied critically. In the present study, effective thermal conductivities of neutral
ly buoyant solid-fluid mixtures were measured in a rotating Couette flow apparatus. Low 
Reynolds numbers were used to avoid the effects of turbulence. Significant enhancement 
in effective thermal conductivity was observed when the Pea were high. Here Pea = ed2/af 
where e is the local mean shear rate, d is the particle diameter, and ctf is the thermal diffu-
sivity of the fluid. Volume fractions employed were 0 = 0.15 and 0.30 for polyethylene 
beads (2.9 mm in diameter) in a mixture of silicone oil and kerosene, and <j> = 0.15 for poly
styrene particles (0.3 mm in diameter) in a mixture of silicone oil and Freon-113. Single-
phase liquid mixtures were also measured in various shear rates to show that the thermal 
conductivity was independent of shear rate and hence the observed phenomenon was not 
an instrumental artifact. The dependence of conductivity on particle Peclet number ap
peared to approach a power law relationship ke = Ped1/2 for high Peclet numbers (300 < 
Ped < 2000). 

Introduction 
It has been known that heat transfer rates in two-phase systems 

are frequently higher than in single-phase fluids at comparable flow 
conditions. A number of mechanisms can be responsible for the en
hanced transport processes. Examples are the effects of latent heat, 
effects associated with particle-scale or bubble-scale microconvection, 
effects of increased velocity gradient at the wall, the contribution of 
turbulent eddies, etc. Usually these mechanisms could not be sepa
rated and examined experimentally. The present investigation is 
focused on the microconvective effects in a disperse two-phase mix
ture generated by the relative motion between the two phases in shear 
flow. Such a microconvection manifests itself in a form of eddy con
ductivity. The origin of such a microconvective thermal conductivity 
has been described [1]. 

Since shear fields are present in most two-phase flows, the shear-
induced microconvection is expected to be a common feature in most 
disperse two-phase flows such as bubbly flows, mist flows, and 
solid-fluid slurries. In a typical two-phase heat transfer, however, the 
microconvective effect is' masked by other simultaneous processes and 
could not be studied in detail individually. In the present study, this 
effect is separated from other effects and measured quantitatively 
in low Reynolds number, rotating Couette flow using a neutrally 
buoyant solid-fluid suspension. 

The rationales for this approach are as follows. 
1 The basic physics of microconvective transport in fluid-solid 

two-phase systems should be similar to that in fluid-fluid two-phase 
systems. This would be particularly true if the discontinuous phase 
in the fluid-fluid system consists of very small bubbles since it is 
known that small bubbles tend to behave like solid spheres with ap
parently nonslip, rigid boundaries. The use of solid-fluid mixtures, 
on the other hand, permits better control in the mean diameter and 
size distribution of the discontinuous phase. 

2 In a rotating Couette flow with radial heating, the mean velocity 
vector is always perpendicular to the mean temperature gradient 
vector, thus bulk convection due to primary fluid motion is elimi-

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TANSFER. Manuscript received by the Heat Transfer Division July 
2,1980. 

nated. 
3 The use of neutrally buoyant mixtures eliminates the mean 

velocity difference between the two phases. Such mean velocity dif
ference may also contribute to the microconvective effect. As a con
sequence, only shear-induced microconvection is observed. 

4 The use of a high viscosity fluid phase prevents turbulence and 
reduces the effects of secondary flows due to free convection. Another 
advantage of the rotating Couette flow geometry is that the shear rate 
is relatively uniform in the gap. 

Description of the Apparatus 
The conductivity of the two-phase mixture was observed in the 

annulus of a rotating Couette flow apparatus with a stationary inner 
cylinder and a rotating outer cylinder. The detailed design of the 
apparatus is shown in Fig. 1. 

The inner cylinder was made of brass with 85.7 mm (3% in.) o.d., 
305 mm (12 in.) length, and 1.59 mm (Vi6 in.) thickness. The outer 
cylinder was also made of brass with 133.4 mm (5V4 in.) i.d., 305 mm 
(12 in.) length, and 3.18 mm (Vs in.) thickness. Thus the gap width 
between the two cylinders was 23.8 mm (1B/i6 in.). 

The heater was made of No. 24 B&S size chromel wire (Hoskins 
Mfg. Co., Detroit, Mich.), wound on a Bakelite tube with 85.6 mm o.d., 
305 mm length, and 3.18 mm thickness. V-grooves of 1.59 mm deep 
were cut spirally along the surface of the Bakelite tube, and the heater 
wire was embedded inside the grooves. The spacing of heater wire was 
five turns per each 25.4 mm (1 in.) interval. 

The hollow interior of the heater tube was filled with small hollow 
glass beads (pearlite, Silbrico Corp., Hodgkins, 111.) to eliminate the 
possibility of free convection within the empty space. The heater was 
composed of five separately heated segments. The heating rate into 
each segment was adjusted to achieve uniform surface temperature 
along the cylinder surfaces. Heat flows radially outward through the 
test medium in the annulus toward the outer cylinder which was kept 
at a constant temperature by thermostat-controlled cooling water 
running through the water jacket. 

Temperatures were measured at the inner and outer brass cylinders 
with ten copper-constantan thermocouples and five thermistors, re
spectively. The thermocouples were embedded in the inner cylinder 
wall by hard silver blazing and the thermistors were embedded in the 
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Fig. 1 Construction details of test section 

outer cylinder wall and sealed with epoxy resins. In order to eliminate 
possible end effects, only the middle 44 mm segment of the test section 
was used for conductivity measurements. This segment had its own 
independent power input and temperature instrumentation. The 
uniformity of axial temperature distribution insured negligible axial 
conduction in the middle 44 mm test section. A schematic illustration 
of the experimental setup is shown in Fig. 2. 

Two different suspensions were tested in these experiments. The 
first consisted of high density polyethylene pellets (Allied Chemical 
Co., Baton Rouge, La.) in a liquid mixture of 9.73 parts by volume of 
12,500 cs silicone oil (Dow Corning 200 silicone fluid) and 1 part of 
industrial grade kerosene. The specific gravity of the solid and liquid 
were 0.960, the liquid specific gravity being measured by a hydrom
eter. Properties of each constituent for test suspensions are given in 
Table 1. 

In order to test the matching of density between particle and liquid 
phases, a small amount (10 cc) of the test suspension was placed in 
a test tube and rotated in a centrifuge (IEC Clinical Centrifuge, 
Damon/IEC Div., Needham Heights, Mass.) at a rotational speed of 
3470 rpm. The arm of the centrifuge was about 150 mm which could 
produce about 2000 g centrifugal acceleration. No discernible sepa
ration between the particle and liquid phases was observed after 1 
minute of centrifugation. After about 3 min, separation between the 
two phases appeared and the bottom 10 mm portion of the 120 mm 
test tube contained only pure liquid phase. Thus if the sample was 
laid in the gravitational field only (1 g acceleration), it would take 
about 6000 minutes (100 hr) for a particle to settle 10 mm due to the 
density difference. Generally speaking, the particle and oil mixture 
was observed to remain in uniform suspension for more than two days 
at room temperature. 

The second test suspension was made of polystyrene particles in 
12,500 cs silicone oil and Freon 113 mixture. The average diameter 
of the particles was 0.3 mm which was about one order of magnitude 

Power 
Train c Suspension 

C3=EE 
fElDVMl ,4D TMI 

Test Section 
TlS U ^ -

Fig. 2 Schematic diagram of experimental system (M = driving motor, DM 
= digital multi-meter, C = heater control box, P = power supply, R = 
thermo-couple electronic junction, DVM = digital volt-meter, DTM = digital 
thermometer, TS = thermostat, H = heater) 

less than that of the polyethylene particles. The purpose of the ex
periments with the second suspension was to examine the particle 
Peclet number dependence at low Peclet numbers. 

Observations by Karnis, et al. [7] showed that the concentration 
of particles in a dense suspension within a Couette channel was uni
form except for a thin particle-depleted layer near the wall. The 
presence of the particle-depleted layer has been known through the 
"sigma" phenomenon whereby the apparent viscosities of suspension 
clays, soils, and mineral paste when measured in capillary viscometers 
were found to decrease with decreasing tube radius [8]. The depth of 
the layer is estimated to be about one particle diameter in Couette 
flow [9]. In order to avoid serious wall effects, small particle to gap 
ratio is desirable. The gap ratios employed were about 1/9 for the 
polyethylene particles and 1/80 for the polystyrene particles. 

The working formula for the experimental determination of the 
effective thermal conductivity is discussed as follows: The absence 
of radial mean convection in the cylindrical Couette flow geometry 

- N o m e n c l a t u r e . , 

C\, C% Cs = general constants 
cp = specific heat at constant pressure 
d = particle diameter 
e = shear rate (= \du/dy\) 
f = function 
g = gravitational acceleration constant 
k = thermal conductivity (refer to subscript 

section) 
n — exponent for a power-law relationship 
Pe = Peclet number (refer to subscript sec

tion) 
q = heat flux 
R = radius of cylinder 

T = temperature (refer to subscript sec
tion) 

AT = temperature difference (T; - T„) 
u, v = velocity components 
r,6 = spatial coordinates 
a = thermal diffusivity 
f$ = temperature coefficient of volume ex

pansion 
p = density 
fi = dynamic viscosity 
v = kinematic viscosity 
</> = particle volume fraction 
oi = rotational speed of outer cylinder 

Subscr ipts 

d = related to particle diameter 
e = effective 
elec = related to electrical heating 
/ = related to liquid phase 
i = related to inner cylinder 
o = related to outer cylinder or unenhanced 

state 
obs = observed 
r, 6 = related to r and 8 coordinates 
s = related to solid phase 
w = related to wall 
vise = related to viscous dissipation 
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enables one to adopt the following energy equation: 

[l/r(d/dr)[rk(r)][dT/dr] + ^[r(d/dr)(v0/r)]2 = 0 

where vo is the tangential velocity given by 

v0 = wf(r) 

where, a) is the angular velocity of the outer cylinder. 
After two integrations, equation (1) leads to 

Ti -T0= HRiqw)/k] £n (fl;/fl0) + (^2/k)I(Ri, R„) 

where 

W,Ro)= f * ° (1/r) ("'r*[(dldr)(f(r)lr)¥dr 
jRi jRi 

dr 

(1) 

(2) 

(3) 

(4) 

The first term on the right-hand side of equation (3) represents the 
contribution due to electrical heating; the second term is due to vis
cous dissipation. The measured quantities in the experiments were 
outer surface temperature, T„, inner surface temperature, T;, and 
power input, qw. 

The relative importance of viscous heating versus wall heating is 
proportional to ixo)2lqw. By using low viscosity fluids and high wall 
heating rates, the viscous heating effects could be minimized or 
eliminated. However, these measures would lead to higher Rayleigh 
numbers thus increasing the potential of possible errors due to free 
convection. Furthermore, the high temperature differences accom
panying high values of qw also aggravates temperature-dependent 
variable property effects. For the present experiments, qw was chosen 
to give a temperature difference in the range of 10 to 20 K. The fluid 
viscosity was chosen so that the maximum correction for viscous 
heating, using the method described below, is about 10 percent. After 
applying the dissipation correction, the maximum uncertainty due 
to dissipation effect was less than 0.3 percent for high shear data (Ped 
ca 2,000 and 20 for polyethylene and polystyrene, respectively) and 
less than 0.1 percent for low shear data (Ped =* 200 and 2 for poly
ethylene and polystyrene suspension, respectively). Thus, the de
grading of accuracy by viscous heating was insignificant. This was 
especially true at the lower rotation rates because of the dependence 
of the viscous dissipation term on the angular velocity. 

Published studies of free convection in vertical slots [10,11] have 
shown that for Rayleigh numbers less than 1000, the velocity vector 
of the free convection current is always perpendicular to the tem
perature gradient vector and hence plays no role in heat transfer. In 
the present experiments, the Rayleigh number rarely exceeds 900. As 
an experimental check, the apparatus was operated both horizontally 
and vertically and identical results were obtained. Thus the effects 
of free convection was judged to be insignificant. The particle Reyn
olds number, ed2/v, associated with shear induced rotation was in the 
range of Re < 0.03 for the polyethylene suspensions and in the range 
of Re < 0.0006 for the polystyrene suspensions. 

The correction of viscous dissipation was made by in situ experi
mental methods rather than resorting to equation (3). One of the 
difficulties in the employment of equation (3) was that if the medium 
is non-Newtonian, the viscosity is not only a material property but 
may also depend on the angular velocity [12-14]. To avoid these 
problems, for runs at high angular velocities, i.e. at high Peclet 

numbers, an identical run was performed with no electrical heating. 
Thus, the contribution of viscous dissipation was identified separately 
and the true AT due to electrical heating could be determined. The 
underlying mechanism for this correction scheme originates from the 
linearity of the energy equation. Specifically, equation (3) can be 
written as follows. 

Tabs = Ti - T0 = (ClQJk) + (C2/k) = ATe,ec + ATVl (5) 

AT0ba is t"he observed temperature difference which includes the 
contribution of viscous dissipation as well as electrical heating. The 
contribution due to dissipation, ATV;SC, was measured separately by 
running the apparatus without external power input and subtracted 
from (T; — T„) yielding the net contribution (ATelec) due to electrical 
heating. Based upon that temperature difference and supplied power, 
the effective thermal conductivity is determined from the first part 
of the right-hand side of equation (3). 

Experimental Results 
The observed results are presented in terms of conductivity en

hancement ratios as a function of particle Peclet number. 

kjk0 = C/(Ped) 

Ped = ed2/a/ 

(6) 

(7) 

where ke is the effective thermal conductivity in shear flow, k0 the 
static conductivity, e, the mean shear rate, d, the characteristic linear 
dimension of a particle, and ay, the thermal diffusivity. Theoretical 
and dimensional arguments for the appropriateness of Peclet number 
for the representation of the enhancement of conductivity was given 
by Chen and Sohn [1] and will be discussed further below. 

Figure 3 shows the observed conductivity for the silicone oil-ker
osene liquid mixture which has been used as the liquid phase of 
polyethylene suspensions. Figure 4 shows the experimental results 
for test suspensions of polyethylene particles at <j> = 0.15 and 0.30 and 
polystyrene suspension at 0 = 0.15. Figure 3 shows that the observed 
conductivity for single-phase fluid mixture was independent of the 
angular velocity. Thus the shear-dependent conductivities for mul
tiphase mixture, to be discussed below, were not due to a method
ological artifact. The results in Fig. 3 were compared with predictions 
based on Li's formula [15] for miscible mixtures. The agreement was 
within 5 percent. 

In contrast to the conductivity of the liquid (0 = 0), the conductivity 
of the tested suspensions showed a strong dependence on applied 
shear rates as could be seen in Fig. 4 which showed ke/k0 as a function 
of particle Peclet numbers. It should be noted that the ranges of shear 
rates for the polyethylene suspension tests and the polystyrene sus
pension tests were the same but the difference in diameters between 
the two particles resulted in orders of magnitude differences of the 
Peclet numbers. 

Particles or bubbles in shear flow rotate at a rate proportional to 
the shear rate e, thus creating an eddy in the fluid phase. Such eddies 
induce microconvection effects associated with the surface velocity, 
ed, and eddy length scale, d. Thus the Peclet number, ed2/a/, rep
resents a measure of the eddy scale convection effects as compared 
to conduction. At sufficiently high Peclet numbers, the microcon-
vective effects represent an additional transport mechanism over and 

Table 1 Properties of each constituent for test suspensions 

Suspension I: (90.7 percent Silicone Oil + 9.3 percent Kerosene) + High Density Polyethylene (HDPE) Particles 
Silicone Oil [2] Kerosene [3] Mixture HDPE [4] 

/o(kg/m3) 
fe(W/mK) 
v (m2/s) 
cp (J/Kg K) 

P (Kg/m3) 
k (W/m K) 
v (m2/s) 
cp (J/Kg K) 

975 
0.155 

125 X 10"4 

1.59 X 10-3 

823 
0.145 

0.020 X 10-" 
2.09 X 10~3 

960 
0.154 

76.6 X 10"4 

1.64 X 10"3 

Suspension II: (80.6 percent Silicone Oil + 19.4 percent Freon 113) + Polystyrene Beads 
Silicone Oil [2] Freon 113 [5] Mixture 

nr7K 1,565 1,111 
0.075 0.141 

0.010 X 10"4 46 X 10-4 

975 
0.155 

125 X 10~4 

1.59 X 10-3 0.916 X 10-3 1.46 X 10~3 

960 
0.46-0.52 

2.41 X 10"~3 

Polystyrene [6] 
1,111 

0.105 

1.19 X 10"3 
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above molecular transport thus leading to an enhancement of the 
apparent conductivity. This phenomenon clearly exists in all disperse 
two-phase flows, not only in solid slurry flows. It may well be an im
portant contributor to the higher observed heat transfer rates in 
two-phase systems especially those not involving phase change 
[16]. 

Examination of Fig. 4 showed that the data appear to fall into two 
regimes. In the low Peclet number regime (Pe^ > 50), the enhance
ment of thermal conductivity was modest. Here the microconvection 
probably can be viewed as a perturbation of the basically molecular 
transport. In the high Peclet number regime (Pe<i < 300) the effective 
conductivity was several times higher than molecular conductivity 
indicating that microconvective effects dominate the transport. In 
this regime, the data appear to approach the power-law relation
ship 

ke/ko = f(4>,.. . ) P e d
n ; n = 1/2 for Pe d > 300 (8) 

The actual exponents for all data with Ped > 300 were 0.49 and 0.45 
for 4> = 0.30 and 0.15, respectively, as determined from least square 
procedures. It is interesting to note that 1/2 power law is reminiscent 
of other thermal boundary layer type of convection processes at high 
Peclet numbers. 

Shear-dependent thermal conductivities were also reported by 
Ahuja [17]. His experiments were based on gross heat transfer mea
surements in a shell and tube heat exchanger arrangement, employing 
the Graetz entrance flow solutions to evaluate the thermal conduc
tivities for a saline/polystyrene latex suspension in the circular tube. 
When his shear rates were converted into estimated ranges of Peclet 
numbers, his data appear to be in semi-quantitative agreement with 
the present results. However, since the shear rate is not uniform in 
Poiseuille flow and since the Graetz solutions are for a uniform con
ductivity fluid with rather specific boundary conditions difficult to 
duplicate in a heat exchanger, the value of his data was probably 

O.b 

0.2 

O.I 

1 1 1 

. 

</> = O 

[ 1 1 

1 

r 

1 

1 

• • • 

i 

, 

-

0.16 

O.I 1.0 2 
u(rad/soc) 

Fig. 3 Thermal conductivity of liquid mixture of silicone oil and kerosene 

largely qualitative. Quantitative comparison between Ahuja's data 
and the present results would not be meaningful. In addition, because 
of the quality of data and small range of shear rates covered, it was 
not possible to determine a reliable value of the exponent n in equa
tion (8) from Ahuja's data. 

For dilute suspensions in which particle-particle interaction can 
be neglected, theoretical results for conductivity enhancement have 
been presented by Leal [18] for low Ped, and Nir and Acrivos [19] for 
high Ped. The seeming agreement between the weak Ped dependence 
of the present low Ped data and the prediction of n = 1/11 by Nir and 
Acrivos for high Ped is fortuitous since the regimes and physical 
mechanisms are different. In addition, our data at low Pe</ lack the 
precision to check Leal's prediction that microconvective contribution 
(the perturbation) is proportional to Pe^3/2. In any case, the volume 
fractions employed in the present experiments, 0 = 0.15 and 0.3, are 
much too high for particle-particle interactions to be neglected. 
Agreement with either theory is thus not expected. 

A somewhat disturbing feature of the present data is the lack of 
quantitative agreement between the two <t> = 0.15 curves employing 
different suspensions. The cause of this disagreement is not under
stood. Perhaps it is associated with the property difference between 
the constituent materials or other factors not considered in the present 
investigation, including the effect of particle size and electrostatic 
forces. In other words, although the present results show that the 
microconvective enhancement is closely associated with the particle 
Peclet number, Pe<j, there are clearly many other parameters which 
also affect the enhancement ratio. It is hoped that this communication 
will stimulate other investigations in this important and interesting, 
phenomenon. 

Conclusions 
The following conclusions can be drawn from the present re

sults: 
1 In shear flow, disperse two-phase mixtures exhibit a higher ef

fective thermal conductivity as a consequence of microconvection. 
The phenomenon is similar to the eddy conductivity in turbulence. 
As a result, the effective conductivity of such a mixture is not only a 
material property but it also depends on flow parameters as well. 

2 The particle Peclet number defined in equation (7) appears to 
be an appropriate parameter for the intensity of the microconvection 
effect. However, two suspensions with different kf/ks ratios did not 
yield identical microconvective effects at the same Ped. Presumably 
parameters other than Ped also play important roles and should be 
investigated. 

3 At high Ped ranges (greater than 300), effective conductivity 
appears to approach the power law Ped1 '2. Further experimental 
verifications of this trend at even higher Ped would be desirable. 

4 The same physical phenomenon is expected to exist in disperse 
liquid-liquid and liquid-vapor system. Because of the deformability 
of the particles and the possibility of bubble coalescence and breakup, 
the phenomenology would be much more complex. The importance 
of microconvection in these systems should be assessed. 

10 o Polystyrene suspension at $ = 0.15 
* Polyethylene suspension at if> = 0.30 
« Polyethylene suspension at { = 0.15 

dV= 0.15 

10 100 5 lOOO2 

P e d (=ed7a f ) 

Fig. 4 The enhancement ratio of conductivity (kelka) as a function of particle 
Peclet number (Ped) 
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Correlation of Pressure Undershoot 
During Hot-Water Depressurization2 

A method is devised for correlating the extent that the pressure of a system undershoots 
the saturation pressure during a rapid depressurization in water. The dependent vari
ables in the correlation are the initial water temperature and the depressurization rate. 
The correlation is motivated by classical nucleation theory, and based on data from a vari
ety of sources. The probable error of pressure undershoots predicted by the correlation 
is ±10.4 percent. 

I n t r o d u c t i o n 
When high-temperature, high-pressure, water is suddenly 

depressurized it passes from a subcooled to a superheated state. It 
finally reaches a pressure, pn, far enough below its normal boiling 
pressure, psat, that it flashes explosively into vapor. We call (psat — 
pn), the pressure undershoot. Such a depressurization can occur 
routinely as the result of turbulent fluctuations of hot water in a 
nozzle. And there is concern that it could result in the unhappy event 
of a hot water line fracture in a steam power plant. 

Figure 1 shows the path such a depressurization might take. 
Starting at an initial point, (', it follows an isentropic path which we 
have shown [1] to remain within a degree or so of isothermal. When 
the liquid pressure falls below the saturation pressure at the initial 
temperature, nucleation starts to occur. The faster depressurization 
occurs, the greater the pressure undershoot will be, and the greater 
will be the violence with which flashing occurs. 

There is increasing interest in the pressure undershoot, among 
people concerned with predicting the two-phase flow following a rapid 
depressurization. One reason is that the undershoot helps to deter
mine the initial conditions on the subsequent blowdown process; 
another is that the influence of the resulting pressure rarefaction wave 
on structures must be fully understood. Within the past decade rel
evant observations of the pressure undershoot have been made by 
Edwards and O'Brien [2], Kenning and Thirunavukkarasu [3], Ras-
sokhin, et al. [4], workers in this laboratory [1, 5], Hooper, et al. [6], 
Friz, et al. [7], and Sozzi and Fedrick [8], among others. 

The aim of the present paper is to propose a rational strategy for 
correlating the pressure undershoot in terms of the relevant system 
variables, and to construct such a correlation using both prior mea
surements and original data. 

Formulation of Correlation 
Homogenous Nucleation. The classical theories of Volmer, 

Doring, Kagan, etc. (see discussion by Skripov [9], sections 11 and 12) 
hold that nucleation occurs when the "potential barrier" to nucleation, 
4wrc

 2rj/3, is within an order of magnitude of kT. The critical nucleus 
radius, rc, (see a useful recent discussion by Ward, et al. [10]) can be 
simplified with negligible error to (see [9], section 8) to 

2<r/(l -vf/vg)(pset-Pn) 

Then 

. nucleation events 
r nuc. events 

m.3 — s 

(1) 

(2) 
molec. collision N^B/v/ 

where the Gibbs number, Gb, is the potential barrier divided by kT. 

1 Most of this work was done while both authors were associated with the 
Boiling and Phase-Change Laboratory, Mechanical Engineering Department, 
University of Kentucky, Lexington, Ky. 

2 This work was supported by the Electric Power Research Institute under 
research contract, RP-687-1 with Balraj Sehgal serving as contract manager. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
October 24, 1979. 

B is the frequency with which a liquid molecule interacts with its 
neighbors—approximately (feT/Planck's constant) or about 1013/s. 
The rapid heating experiments of Skripov, et al. [11] give typical 
limi+ing values of 

J =* 1034 J - 1 ; ; ' ^ 1 0 - 5 ; G b ^ l l 

Normally, nucleation occurs at much larger values of Gb than 11. 
Heterogeneous Nucleation at High Superheat in Practical 

Systems. Nucleation of superheated water in real systems usually 
occurs at the walls where there are sizable surface imperfections. In 
such cases nucleation eventually becomes a deterministic phenome
non to be predicted by direct analysis of permanent gas pockets, 
contact angles, and surface geometry. 

But as long as the process is initiated stochastically by molecular 
disturbances, the Gibbs number can be multiplied by a heterogeneity 
factor <j>, where (j> < 1, to reduce it to a conventional homogeneous 
nucleation value. When no true heterogeneous elements are present, 
the true value of <j> remains well within an order of magnitude of unity. 
It can be considerably smaller if such elements as gas pockets are 
present. 

We presume that, if physical heterogeneities are small enough, they 
can be dealt with using the homogeneous theory and will respond 
randomly to molecular fluctuations. When they become at all sizable 
they must be treated deterministically. At that point the present 
correlation will reveal the limitation by breaking down. 

We further note that, since nucleation should occur in the plane 
of the wall,3 NA/VI should be replaced by (NA/V/)2/3, as has been 
suggested by Blander and Katz [12], in equation (4). Combining these 
ideas, we modify equation (2) as follows for use in the present 
problem. 

3 This was observed to be the case in [3], and one would expect it to be gen
erally true. 

. isothermal path 
- isentropic depressurization path 

c r j t j c a l saturated liquid and vapor states 

• f t * 
vapor states 

spinodal lines (loci of[dp/d v]=0) 

Fig. 1 The depressurization process 
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nucl. events 

= ( ^ 1 2/3 

Of I 
B exp 

167TCT3 

3fcT 11 - —I (p p ) 2 

(3) 

Notice that J takes on an altered meaning here. It is now based on area 
instead of volume. 

Our problem is that of determining how to specify a criterion for 
nucleation in terms of J. Figure 2 shows a typical depressurization 
process leading up to nucleation, on pressure-time coordinates. This 
is one of our own traces but it is typical of other people's measure
ments as well. Between p s a t and the minimum pressure, which we 
identify as p„, we can write 

Psat ~ P = T,'t (4) 

where 2 ' is the constant rate of depressurization in atm/s and p is any 
local pressure < paat. We identify pn as the pressure at which the al
most linear rate of depressurization is abruptly halted. This pre
sumably occurs when superheating cannot proceed any further. 

The total density of nuclei, Z, that are triggered up to the time, tn, 
at which depressurization is halted is 

, nuclei J»t„ 

o 
Jdt (5) 

Combining equations (4) and (3) and putting the result in equation 
(5) we obtain, after integration, 

Pn) , _„, s ^ ( P s a f 

Vfl £ ' 

where 

16-TTCT 3 

''in)<t> erfc -\/?j0] 

Gb 

3kT\l 
vf 

(6) 

(7) 

(Psa t -Pn) 2 

Equation (6) provides a basis for predicting the point beyond which 
a given depressurization must be halted. This will occur before an 
entire surface is covered by nuclei as shown in Pig. 3. We say "before" 
because a new nucleus multiplies its size many times within micro
seconds of inception. We therefore set Z equal to its upper limit 

£ = l / 2 V 3 r c
2 

in equation (6) and use equation (1) to get 

E ' l -
/~TrrJ4> erfc VrJQ = 

"/ 

*±y*By/m*nv, 

(8) 

(9) 

That Z is in fact much smaller than the value given in equation (8) 
is not important as long as equation (8) expresses the correct func
tional dependence for Z. The reason is that we must next establish 

1000 

500 

slope in superheated . 
liquid range,Z'=0.l7xl06-9|n 

I I I I I 
Pl=9O0psia I 

i p . =435.5 psia 

— pn=260 psia 

5 10 
time, t ms (arbitrary zero) 

Fig. 2 A typical pressure-time history in the present 5.08 cm pipe experi
ments. Local temperature is 233.9°C. (pressure transducer #PT-1, run No. 
HW-20) 

Area of hexagon 
subtended by 
circle = 2 y 3 r c

2 

A Z 
I 

m a x"2yjrcZ 

Fig. 3 Maximum conceivable density of nuclei on pipe wall. Actual p„ will 
be reached when some growth has occurred and r » rc 

4> by correlation using equation (9). The use of equation (8) leads to 
a lower numerical value of 0, which correctly reflects the fact that early 
bubble growth contributes an additional kind of heterogeneity to the 
system as nucleation progresses. 

A C o r r e l a t i o n for the H e t e r o g e n e i t y F a c t o r , <j> 
The right-hand side of equation (9) contains information which is 

known in any experimental determination of p„. The left-hand side 
includes the unknown heterogeneity factor, <p. We therefore seek to 
evaluate 0 using the existing data4 of [1-8], and new data obtained 
in a 2 in. (5.08 cm) i.d. tube which was similar to the V2 in. (1.27 cm) 
i.d. tube used in [1]. These new data are described [15]. 

In reducing data for cases in which 2 ' was less than about 0.004 
Matm/s we encountered a difficulty that did not occur when 
depressurization was more rapid. Instead of falling almost linearly 
prior t o p n , as indicated in Fig. 2, the pressure fell in a ragged and/or 
sawtooth fashion. The point, p„, could no longer be identified with 
any confidence. This was true of all the data in [6] and [7] and two of 
our 5.08 cm i.d. pipe data. 

These data are included in our subsequent graphs, but they are not 
used in any of the correlations nor in the assessments of their accuracy. 
The correlations should likewise be restricted to use at depressuri-

4 Data from the first pressure transducer in the experiments of [5] proved 
to be based on temperatures that were slightly high. A rational correction was 
devised in [15] and applied to the results. 

- N o m e n c l a t u r e 

B = frequency of interaction of a molecule 
with its neighbors (<~kT/Planck's con
stant) 

Gb = the Gibbs number, Wcr/kT or r](j> 
J = frequency of nucleation events per unit 

volume or per unit area (distinguished in 
context) 

J = nucleation events per molecular colli
sion 

k = Boltzmann's constant 
NA = Avogadro's number 
P, Pi, Pn, Psat = pressure. Initial pressure, 

minimum pressure in depressurization 

process, saturation pressure at initial 
temperature, T; 

rc = critical radius of an unstable nucleus (see 
equation (1)) 

t, tn = time: time at which nucleation is too 
dense to permit further depressurization 

T, Tc, Ti, Tr = temperature: critical tem
perature; initial temperature in a depres
surization process; reduced temperature, 
Ti/Tc 

v, Vf, ug = molar specific volume: molar spe
cific volume of saturated liquid and of 
saturated vapor at Ti 

Z = total number of nuclei per m2 that occur 
during depressurization between p s a t and 
Pn 

7) = Gb/0 
a = surface tension between liquid and 

vapor 
2 ' = the rate of depressurization (expressed 

in Matm/s in the present study) 
<p = the heterogeneity factor, or ratio of the 

potential barrier for heterogeneous nucle
ation to that for homogeneous nucleation 
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zation rates in excess of 0.004 Matm/s. Notice that the failure of 
depressurization to yield a sharp p„, in these cases, is the result of 
large deterministic nucleation sites being activated. We anticipated 
that this would occur when depressurization is too slow to reach the 
large numbers of sites that will be activated by molecular fluctua
tions. 

The procedure for correlating <j> with the two independent variables, 
Tr = Tt/Tc and 2 ' , was as follows: The available depressurization data 
(Pn, Ti, 2 ') were encoded6 on cards and the relevant properties of 
water (u/, ug, a, and pmt) were written as functions of T, based on data 
from [13] and [14]. This information gives the right-hand side of 
equation (9) for each measurement. This made it possible to establish 
a set of values of 0 for corresponding values of T; and 2 ' using New
ton's iteration. 

Next, we assumed: 

0 ( T r , 2 ' ) = / i ( T r ) . / 2 ( 2 ' ) (10) 

Initially /2(2') was set equal to unity and fi(Tr) was obtained in the 
form of a simple power law function in Tr. Next, the 4> values were 
divided by this j \ and the quotient, /2(2') was correlated as a linear 
function in 2'0-8. This procedure was repeated and convergence was 
achieved after several iterations each, for f\ and fi. The result was 

0 = 0.1058 Tr
28-46 (1 + 14 E'0-8) (11) 

for 2 ' expressed in Matm/s. The ranges in which the correlation has 
been found to represent the data are 

0.62 ==; Tr =g 0.935 

0.004 Matm/s «: 2 ' < 1.803 Matm/s 

For lower values of 2 ' and Tr we believe that the present model is 
inapplicable. 

That the choice of the functions, / i and j% was realistic is shown in 
Figs. 4(a) and 4(b) where 4>lh and 0//i are;plotted against Tr and 2 ' , 
respectively. The accuracy of these representations is clearly very high 
with correlation coefficients of 0.99 and 0.95, respectively. Notice the 
scattered data to the left of 2 ' = 0.004 Matm/s in Fig. 4(6). These 
points are excluded from the correlation. 

We should alert the reader to the fact that equation (11) gives values 
of the inhomogeneity factor, 0, that vary from 0.055 down to 2 X 10~7. 
The smaller of these values of <j> suggest substantial inhomogeneities 
that should possibly be treated deterministically, as conventional 
nucleation sites. There are two important reasons why such small 
values of 4> can still be treated stochastically without contradicting 
the kinetic theory. 

In the first place, an inhomogeneity (or nucleation site) can still be 
triggered by molecular fluctuations if it is small enough, and only a 
very small inhomogeneity is needed to reduce <f> greatly. Thus we ex
pect the stochastic kinetic theory to be valid even when 0 is consid
erably less than unity. 

In the second place, the Values of <j> that we report are apparent 
values subject to increasing distortion as Tr and 2 ' are reduced. We 
have already noted that the apparent value of tj> is made far smaller 
than the actual tj> at p„ by the fact that bubble growth occurs during 
the few microseconds needed to make p„ visible oh the oscilloscope 
trace. Furthermore, the presence of a very small inhomogeneity 
greatly increases pn and, with it, the value of rc. We calculate our 
apparent values of </> at the observed p„—not at the associated 
pure-homogeneous point, where the actual value of </> would be a great 
deal larger. 

We are able to tell where the present stochastic treatment ulti
mately fails by observing where the correlation based on it ceases to 
unify diverse data. The data for 2 ' < 0.004 Matm/s undoubtedly re
flect such a failure and would have to be predicted using a deter
ministic model. 
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T h e P r e s s u r e U n d e r s h o o t C o r r e l a t i o n 
Once an apparent value of <j> is established, we need only note that 

the dimensionless pressure undershoot correlation can be written 
(recall equation (7)) in the form 
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a3/2 T 13.73 ( ! + 1 4 £ '0 .8)0 .6 
1.33 ^ — — — 

(12) 

The data yield an average value of l /VGb equal to 0.188. This cor
responds with Gb = 28.2 ± 5.8, where we have reported the probable 
error. Thus the final correlation takes the form: 

Psat - Pn = 0.252 
0.3/2 7^13.73 (1 + 1 4 V ' 0 - 8 ) 0 - 6 

.a) 
Ugl 

(13) 

6 Computer output showing the data, and/or the results derived from them, 
can be obtained from the authors on request. 

where the dimensions of 2 ' are Matm/s and the remaining dimensions 
are self-consistent. 

The Gibbs function of 28.2 is based on the assumption that Z -
l /2 \ /3 <"c

2. Actually, as we noted previously, Z should be based on the 
average radius to which bubbles have grown when further nucleation 
becomes impossible. Accordingly, Z should be smaller and the actual 
value of 4> should be larger. Thus some bubble growth following nu-
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cleation is reflected in Gb, making it appear smaller, as it also made 
the effective inhomogeneity seem smaller than it is. 

The deviation of the actual nucleation pressure, pnt from the value 
given by the correlation, is plotted against Tr in the form (pnc„„ei. — 
p J/(p s a t — Pne«pt)>m Fig- 5. It shows that the correlation represents 
the data within a standard error of ±10.4 percent. 

It is important to note that the only system variables that influence 
(Psat— P J a r e V̂ a n d 2 ' . The differences in water preparation, surface 
finish of the metallic containers, etc., in the different systems, are not 
evident. Since the water was generally subjected to high pressure prior 
to depressurization, the pipe walls were generally well-wetted. It is 
possible that commercially finished steel, which was used in all the 
experiments, provided a common level of surface inhomogeneity, as 
well. 

For the convenience of the engineer who wants to read the magni
tude of p n directly in terms of 2 ' and 7*;, we plot equation (13) in these 
dimensional terms in Fig. 6. 

Conclusions 
1 A correlation has been developed on the basis of classical nu

cleation theory. It suggests that the Gibbs number for nucleation in 
water during depressurization from high pressure is about 28.2 ± 5.8. 
This result may or may not be restricted to commercially finished 
pressure vessels and tubing. It corresponds to 

j <* 10-
, nucl. events 

molec. collisions 

or with 

1018 nucl. events 

And it includes some post-nucleation bubble growth in the inhomo
geneity factor. (J or j would be much smaller without the distortions 
reflected in <j>.) 

2 The pressure undershoot that can be anticipated in a linear 
depressurization process (equation (4)) is given within ±10.4 percent 
by equation (13). This result has been established in the ranges: 0.62 
< T r sc 0.935 and 0.004 Matm/s < S ' ^ 1.803 Matm/s. 
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Bubble Growth During 
Decompression of a Liquid 
The solution of the diffusion equation in spherical coordinates subject to time-dependent 
boundary conditions is derived. The solution can be employed to describe the growth of 
either a diffusion-controlled gas bubble or a heat transfer-controlled vapor bubble provid
ed that convection effect is negligible. It is shown that the Epstein-Plesset solution for a 
gas bubble in a constant pressure field and the Jones-Zuber solution in a Cartesian coor
dinate system for a vapor bubble in a variable pressure field are special cases of the 
present solution. Numerical results obtained from the present analysis compare favorably 
with available experimental data for the growth of both gas and vapor bubbles during de
compression processes. 

I n t r o d u c t i o n 
Bubble growth dynamics play an important role in both cavitation 

and boiling. There are three different mechanisms that can control 
the rate of growth or collapse of a bubble. These mechanisms are re
ferred to as inertia-controlled, heat transfer-controlled, and diffu
sion-controlled growth or collapse in the literature. A general review 
of all aspects of bubble dynamics can be found in reference [1]. In this 
paper, discussions will be limited to the heat transfer-controlled and 
diffusion-controlled bubble growth. Only relevant and more recent 
work will be mentioned. 

Theoretical studies of the heat transfer-controlled growth of a vapor 
bubble in a uniformly superheated liquid and in a constant pressure 
field have been reported by Plesset and Zwick [2], and by Forster and 
Zuber [3]. Recently, Jones and Zuber [4] reported the results of vapor 
bubble growth in variable pressure fields and found that the variable 
pressure effects can be quite important. Theofanous, et al. [5] reported 
the numerical solution of bubble growth in time-dependent pressure 
fields. Their results also include the effects of nonequilibrium at the 
liquid-vapor interface, inertia of the liquid, and surface tension. 

Theoretical studies of the diffusion-controlled growth of a gas 
bubble in a constant pressure field have been reported by Epstein and 
Plesset [6] and by Birkhoff, et al. [7]. The latter included the con
vection term in the governing equation. Recently, Minkowycz, et al. 
[8] reported the numerical results of simultaneously solving the ex
tended Rayleigh equation and the diffusion equation. Scriven [9] 
reported the results of simultaneously solving the heat conduction 
and the diffusion equations. 

The purpose of this paper is to provide a simple description of either 
heat transfer or diffusion-controlled growth of a bubble in time-
dependent pressure fields, including the effect of variable density in 
the bubble with the liquid-vapor or gas interface assumed to be in 
thermodynamic equilibrium. Comparison of the results of the present 
analysis with experimental data are presented. 

G r o w t h of a Gas B u b b l e 
Formulation. Consider a spherical gas bubble in a dilute liquid-

gas solution. If mass transfer by convection is neglected, the diffusion 
equation becomes 

— = 
dt \dr2 r drj 

The initial and boundary conditions are 

: „ /d2C 2 dC 
(1) 

C{r, 0) = Ci; Mm C(r, t) = C;; C(R, t) = Cs{t) (2) 

It can be shown [8] that if the following new variables are intro
duced, 
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7? = r/fl - 1; r = ot/R2; 4, = r(C - d)/R 

Equations (1) and (2) become 

i>4> d24> 

dr brj2 

<t>(r,, 0) = 0; lim 4,(v, T) = 0; 4,(0, T) = Cs - d 

(3) 

(4) 

(5) 

The solution to equations (4) and (5) is readily available [10]. 

^ ' T ) = 2 ^ J o X^ dX (6) 

The quantity relevant to the present problem is the concentration 
gradient at the bubble boundary which, after being transformed back 
to physical variables, turns out to be 

/dCj = d C„(0) TJ_d-CB 

— d + " R 

where 

1 

(Tdt)1'2 

•«/fl2 Cs'(X)dX 

(7) 

RM1'2 I (5t/R2 - A)1'2 

and CS'(X) represents the derivative of Cs with respect to X. 
Applying a mass balance at the bubble boundary gives 

4-irR28 
IdC d U 

TrRsPg\ 
\drjr=R dt\3 

From equations (7) and (9), the following equation is obtained. 

(8) 

(9) 

dR R dpe 
pg — + — = 5 

dt 3 dt 

C / - C s ( 0 ) 

(wSt)1'2 J + 
Q-

R 
(10) 

For the special case of constant density and constant saturation 
concentration, equation (10) reduces to that reported by Epstein and 
Plesset [6]. The integral J represents additional mass transfer due 
to pressure variation. 

As a first approximation, the effects of viscosity, surface tension, 
and liquid inertia are neglected. As demonstrated by Birkhoff, et al. 
[7], this assumption is justified as long as the bubble size is not ex
tremely small. The saturation concentration can then be related to 
the system pressure by employing Henry's law: 

d = HP 

The initial concentration can be expressed as 

d = bHPt 

(ID 

(12) 

Thus, the solution is supersaturated initially if b > 1 and under-
saturated if b < 1. The density variation in the bubble is assumed to 
follow the polytropic relation 

Ppg constant (13) 
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Equations (10-13) together with the initial condition, R = fl;at t = 
0, completely determine the growth of the bubble provided that the 
variation of the system pressure is specified. 

Numerical Results. As an example, the growth of a gas bubble 
in a CCVwater system is studied for an exponential pressure decay 

P-Pf= (Pi - Pf) exp (-at) (14) 

Equations (10-14) are solved numerically with a numerical integration 
for the integral J and a fourth-order Runge-Kutta numerical scheme 
for the ordinary differential equation (10). 

Figure 1 shows the calculated results of the growth of a bubble 
under various decompression processes. The instantaneous decom
pression case shown in Fig. 1 is calculated by assuming constant values 
of pg and Cs and thus corresponds to the Epstein-Plesset solution. 
It is obvious that the Epstein-Plesset solution is the limiting case (a 
-» oo) of the present solution. Figure 2 shows the typical dimensionless 
concentration profile at various instants. As t becomes larger, the 
dimensionless concentration profile approaches that of the instan
taneous decompression case. This behavior can also be expected by 
examining equation (10). As t -» », the pressure ceases to vary and 
Cs becomes constant. Thus, both the integral J and dpg/dt vanish and 
equation (10) becomes identical to that of Epstein and Plesset. 

An interesting result can be observed by examining the limit of the 
integral J as t -* <». Substituting equations (11) and (14) into equation 
(8): 

J= - • 
aHR(Pi-Pf) f6t/R2exp(-aR2\/8)d\ i (15) 

5(w)1/2 J o (St/R2 - \)1'2 

As demonstrated by Jones and Zuber [4], this integral J can be 
transformed into a better-known form by introducing the following 
new variables: 

- \aR2l8t 

Z~[ 8 \R2' 

Equation (15) becomes, 

1/2 
* = (at)1'2 

where 

and 

J = C^bo) 

Ci = -2H(Pi - Pf)(aU&yn = constant 

(16) 

(17) 

D(w) = exp (—w2 

Jo 
exp (z2)dz (18) 

D(w) is the so-called Dawson Integral and has the following prop
erty: 

D(w)~*— as ui 
2w 

1.05 

R|= 0.0508mm 

T = 25°C 

P. = 0.378 mPd 

Fig. 1 Calculated results of the growth of a gas bubble in a C02-water system 
under various decompression processes 
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Fig. 2 Calculated results of nondimenslonal concentration profiles at various 
instants for a gas bubble in a C02-water system during a decompression 
process 

Therefore, 

Ci 

2(at)W 
as ( a t ) i / 2 - » 

. .Nomenclature . , 
a = constant defined in equation (14) 
B = gas constant 
b = constant defined in equation (12) 
C = concentration 
Cs(0) = saturation concentration correspond 

to the initial pressure Pi 
c = specific heat of liquid 
D(w) = Dawson integral defined by equation 

(18) 
H = Henry's law constant 
ifs = latent heat of vaporization 
I = integral defined by equation (22) 
J = integral defined by equation (8) 
Ja r = Jakob number defined by equation 

(30) 
Jap = Jakob number defined by equation 

(31) 
k = thermal conductivity of liquid 
n = polytropic exponent 

P = pressure 
P(R) = liquid pressure at bubble boundary 
Pg = gas. or vapor pressure inside the 

bubble 
R = bubble radius 
R = velocity of bubble boundary, dR/dt 
R = acceleration of bubble boundary, d2RI 

dt2 

r = radial coordinate 
t = time 
T = temperature of liquid 
Ts(0) = saturation temperature corre

sponding to the initial pressure P; 
T^0 0) = saturation temperature corre

sponding to the final pressure P/ 
V = volume 
w = variable defined in equation (16) 
z = variable defined in equation (16) 

p = density 
a = thermal diffusivity of liquid 
8 = diffusion coefficient 
r\ — variable defined in equation (3) 
(j> = variable defined in equation (3) 
T = variable defined in equation (3) 
X = dummy variable in T 
8 = variable defined in equation (32) 
fi = liquid viscosity 
<r = surface tension 

Subscripts 

A = atmospheric 
c = cavity 
/ = final 
g = gas or vapor 
i = initial 
£ — liquid 
s = saturation 
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Thus, the integral J approaches zero at a rate inversely proportional 
to the square root of time which is much slower than the exponential 
decay of the pressure. 

Comparison with Experimental Results . Experimental data 
for the growth of a gas bubble in a liquid-gas solution during a de
compression process were reported by Buehl in his dissertation [11], 
which was later published by Buehl and Westwater [12]. Before 
making a direct comparison between the present analysis and the 
experimental results reported by Buehl, certain precautions must be 
taken. First of all, Buehl measured the growth of a bubble in a CCv 
water system from an artificial nucleation site which was a reentrant 
cavity with a large volume beneath the cavity opening. As pointed out 
by Westwater [13], this kind of cavity provides a good gas trap and 
therefore is an excellent site. Secondly, the experimental set-up em
ployed by Buehl provided a very fast decompression process (the 
system pressure dropped to its final value in a matter of 1 s). Most of 
the experimental results reported by Buehl showed that immediately 
after the decompression of the system, the bubble at the artificial site 
had already reached a size with a radius much larger than the di
mension of the cavity opening. For example, during a fast decom
pression test from 0.378 MPa to 0.101 MPa (atmospheric pressure), 
the mean radius of the bubble upon its first appearance shortly after 
the decompression was 0.588 mm. This radius was much larger than 
the dimension of the small opening (0.102 mm) at the surface of the 
artifical site [12]. Since diffusion was unlikely to contribute much 
during the growth of a bubble in such a short period of time, the large 
bubble was likely the result of a rapid expansion of the trapped gas 
in the large cavity. The volume of the bubble during its first appear
ance was 0.852 mm3, and by postulating that the volume of trapped 
gas equals that of the cavity, the bubble volume for an isentropic ex
pansion is 0.615 mm3 and 0.946 mm3 for an isothermal expansion. 
Thus, the initial large radius observed by Buehl and Westwater [12] 
was likely an expansion (closer to an isothermal than an isentropic 
process) of the trapped gas in the cavity. 

To make a comparison between the present analysis and the ex
perimental results reported by Buehl, we must modify the analysis 
described previously to include the effect of trapped gas in the cavity. 
Equation (9) can be altered as follows: 

4irR28 
\drlr-R dt[\3 I . 

(19) 

where Vc is the volume of the cavity. Equation (10) then becomes 

13 AirR2) dt g dt 

'Ci-CM TCi-Ca 

(7n5i)1/2 R 
(20) 

Equation (20) and equations (11-14), together with the initial con
dition R = Ri at t = 0, are solved numerically. Figure 3 shows the 
comparison between the calculated and the measured growth of a 
bubble for two different initial pressures. In the calculations, Ri is 
taken to be half the length of the small opening of the artificial site 
(0.051 mm) and the constant a is set equal to five which corresponds 
to the case that the system pressure dropped to its final value in about 
1 s. This selection is compatible with the experiments. The agreements 
between the experimental and the calculated results are good. There 
were a series of data reported in Buehl's dissertation [11]. All the ex
perimental results showed the same general tendency, i.e., there is a 
fast growth initially which results from the expansion of gas trapped 
in the cavity, followed by slow growth later on when diffusion is the 
dominating mechanism. However, some inconsistency existed among 
these data. For example, Run 28 and Run 29 showed a much faster 
initial growth rate than that of Run 17 even though the initial pres
sures were the same for these tests. Furthermore, bubbles growing 
in a liquid with an initial pressure of 0.202 MPa showed a much faster 
growth rate than those that had initial pressure of 0.340 MPa. This 
abnormal behavior and inconsistency was not explained in Buehl's 
dissertation. However, it was recognized that an accurate Specification 
of the cavity site was probably not achieved in these tests. The results 
of the present analysis indicate that the initial growth rate of the 
bubble depends strongly on the size of the nucleation site. Therefore, 
the inconsistency of experimental data could be the result of different 

sizes of the artificial nucleation sites used in the experiments. In view 
of the uncertainty of the cavity size used in the experiments, the re
sults shown in Fig. 3 should be judged only in a qualitative sense; i.e., 
equation (20) is capable of predicting the trend of the experimental 
results reports by Buehl. 

G r o w t h of a V a p o r B u b b l e 
Formulation. It will be assumed that the liquid properties are 

constant and the liquid temperature at the interface is equal to the 
saturation temperature according to the system pressure. Equations 
(1) through (8) then also apply to heat conduction problem when C 
and 8 are replaced by T and a, respectively. Thus, an equation similar 
to equation (7) can be written as 

Ti-Ts m _Tj-Ts(0) 

{drjr=R (irat)1'2 I + - R 

where 

/ = RW2 X «(/fl2 Ts ' (X)dX 

(at/R2 - X)1'2 

(21) 

(22) 

If R approaches infinity, the third term on the right hand side of 
equation (21) vanishes and equation (21) reduces to a solution re
ported by Jones and Zuber [4]. They employed the solution for a plane 
interface plus a spherical correction factor in their analysis. 

Applying energy and mass balance at the bubble boundary 
yields 

4HS=*=i4(iH (23) 

Combining equations (21) and (23); 

dR k 

dt ifepg 

Ti-TM _I+Ti-Ts R dpg 

3pg dt 
- r- (24) 

(irat)1'2 ' ' R 

The saturation temperature can be related to the system pressure by 
employing the Clausius-Clapeyron equation 

dT _ T 

dP pgifg 

and the ideal gas equation 

P = pgBT 

Equations (25) and (26) can be combined to give 

(25) 

(26) 

Psi, 

Pe T.(0) 
exp 

Ts(0)J 

and 

Ts(0) ifg \Pi 

(27) 

(28) 
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Fig. 3 Comparison of the calculated results with experimental data for the 
growth of a gas bubble from an artificial site during decompression of a 
COj-waler system 
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for the growth of a vapor bubble in liquid nitrogen with Ja r = 0, Jap = 3.71, 
and a = 0.0299 ms - 1 (Fig. 6 of reference [4]) 

Equations (24, 27), and (28) then determine the growth of a vapor 
bubble provided that the variation of the system pressure is speci
fied. 

Comparison with Experimental Results. The data for nitrogen 
bubbles in a pool of nitrogen reported by Hewitt and Parker [14] will 
be compared with the present analysis. The experimental pressure 
variation is approximately exponential, so equation (14) can be em
ployed. Using equations (14) and (25), we obtain from equation 
(24) 

dR 

dt * - ( = ) 

1/2 
+ Jap 

4<rWW2 

J' i r / 2 

0 
sin 8 exp ( -a t sin2 8) d8 + Jap |—. 

RBTAO) 

Ti - Ts 

1 3Pife 

dP 
dt 

Jfs_ 
BTa 

exp 

r,(o)-T.(«). 
_1 1 

T, r,(o) 
(29) 

where 

Jar : 

Jap = 

Ptc[Ti - r,(0)] 

Pgdfg 
p,c[rs(o)-rs(°o)] 

Pgihe 
and 

sin2 8 = 
Xfl2 

at 

(30) 

(31) 

(32) 

Generally, T; ^ Ts(0), and 

T, = Ts(0)onlyif JaT = 0 

For given values of Jay, Jap, i/g, a, a, and B, equations (14) and 
(27-29) can then be employed to calculate the growth of a vapor 
bubble when the system pressure decays exponentially. Comparisons 
of the calculated and the experimental results are shown in Figs. 4-6, 
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and they are seen to be in good agreement. Also shown in Figs. 4-6 are 
the calculated results of Jones and Zuber [4] and of Theofanous, et 
al. [5]. The Jones-Zuber approximate solution, using a spherical 
correction factor, overpredicts slightly the growth of a vapor bubble 
as compared to the present analysis. For small time intervals, the 
present results deviate only slightly from the more exact analysis of 
Theofanous et al. which includes the effects of nonequilibrium at the 
bubble interface, surface tension, liquid inertia, and convective con
tribution. This deviation becomes larger as time increases and is likely 
the result of neglecting convective contribution in the present anal
ysis. 

Discussions 
The result of the present analysis appears to compare favorably 

with experimental result of the growth of either a vaporous or a gas
eous bubble during a decompression process in spite of the many as
sumptions made in order to obtain such a simplified analysis. How
ever, it is important to understand the limitations of the present 
analysis. This can be achieved by examining the various assumptions 
made in this paper. 

The most serious assumption is the neglect of convective contri
bution during the growth processes. This assumption is valid only 
if 

8/(RR) » 1 for a gas bubble 

and 

a/(RR) » 1 for a vapor bubble 

Using the result shown in Fig. 3, we found that during the slow growth 
period of a gas bubble, 

o 2 X 1(T6 

— s — = 0.1 
RR (0.1) X (2 X HT3) 

For a vapor bubble, we found from Fig. 4 that 

RR (0.08) X (0.6) 

Thus, convective contribution cannot be neglected in either case. 
Neglecting convection effect should result in underpredicting sig
nificantly the growth rate. The fairly good agreement between present 
predictions and experiments shown in Fig. 3 (for the slow growth 
period) and in Figs. 4 to 6 suggests that we may have neglected other 
effects which are also important. 

The equation of motion of the bubble boundary is 

P{RR + -R2) = P(R)-P (33) 

Where P(R) is the pressure in the liquid at the bubble boundary, and 
P is the pressure in the liquid at infinity (system pressure). The 
pressure inside the bubble is given by 

Pg = P(R) + 2a/R + 4/xR/R (34) 

The present analysis neglected the inertia terms in equation (33) and 
assumed that P(R) = P. Neglecting inertia effect results in underes
timating P(R) which in turn results in underestimating Cs and Ts. 
This would result in overpredicting the growth rate according to 
equations (10) and (24). However, inertia effect is small in view of the 
small growth velocity shown in Figs. 3 to 6. For example, using Fig. 
4, it can be shown that pR 2 is of the order of 10~2 N/m2 which is small 
compared to the variation of the system pressure (103 N/m2). 

The present analysis also neglected the effects of surface tension 
and viscosity in equation (34) and assumed that Pg = P(R). Neglecting 
these effects results in underestimating Pg. This also results in ov
erpredicting the growth rate since the gas or vapor in the bubble ov-
erexpands. Using the results shown in Fig. 4, it can be shown that the 

viscous term in equation (34) is small compared to the liquid pressure 
P(R). However, during early stage of the growth, the surface tension 
term in equation (34) is of the order of 10 or 102 N/m2 which is not 
negligible compared to P(R). 

Thus, the effect of neglecting the convective contribution is com
pensated partially by the effect of neglecting surface tension contri
bution during early stage of the growth. This is supported by com
paring the present results with the results of Theofanous, et al. [5], 
which included the effects of convection, surface tension, liquid in
ertia, and nonequilibrium at the interface. As shown in Figs. 4-6, the 
results of the present analysis deviates only slightly from the results 
of Theofanous, et a l , during the early stage of growth. This deviation 
becomes larger as time increases. This is likely to be the result of de
creasing influence of surface tension as the bubble increases in size 
and an indication that convective contribution is not negligible since 
the nonequilibrium effect was shown to be insiginficant in this case 
by Theofanous, et al. (The results were insensitive to the accommo
dation coefficient.) 

Conclusions 
We have shown that the solution of the diffusion equation in 

spherical coordinates with time-dependent boundary conditions can 
be employed to accurately describe either a diffusion-controlled or 
a heat transfer-controlled growth of a bubble in variable pressure 
fields. Good agreement is observed with the available experimental 
data for both a vapor bubble in liquid nitrogen and a gas bubble in 
C02-water solution during decompression processes. It is pointed out 
that the knowledge of the precise volume of the cavity is extremely 
important in determining the growth of a gas bubble during a de
compression process if the growth of the bubble begins from an arti
ficial site that contains a significant volume of trapped gas. Neglecting 
convective contribution in the present analysis results in under-
predicting significantly the growth of a bubble during a decompression 
process. This effect, however, is probably compensated by the effect 
of neglecting surface tension during early stage of the growth while 
the size of the bubble is still relatively small. 
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Homogeneous Nucleation and the 
Spinodal Line2 

The limit of homogeneous nucleation in a liquid is shown to lie very close to its liquid spi
nodal line. It is also argued that the homogeneous nucleation prediction should be based 
on a comparison of the critical work of nucleation with the "potential well" energy instead 
of the kinetic molecular energy. The result is a new prediction of the liquid spinodal line 
for water that is valid to large negative pressures. This prediction compares well with spi
nodal points obtained by extrapolating liquid and vapor water data with the Himpan 
equation. 

In troduc t ion 
Objective. There have been some problems in the literature as to 

the relation between the homogeneous nucleation limit and the spi
nodal line. Indeed, when we [1] argued that the two were nearly the 
same in a superheated liquid, but quite different in a subcooled vapor, 
we were questioned sharply by referees. Some of them objected that 
the spinodal line was a fictional limit that could not ever be demon
strated experimentally. 

At the time, our evidence that the two liquid limits were nearly the 
same was strong, but only circumstantial. A direct argument must still 
be offered to show that the two limits lie close to one another. Such 
a demonstration would have considerable value because the spinodal 
line—not the homogeneous limit—defines the local minimum in a 
correct equation of state. But only the latter can be established ex
perimentally. If the two are close, then the spinodal line will be known 
as well. We would then have another constraint to add in the formu
lation of an equation of state that will have validity in the metastable 
liquid regime. 

The Spinodal Limit. Conventional equations of state are written 
to describe the gas and liquid states as though they were continua— 
not made of molecules. Since such equations must satisfy the Max-
well-Gibbs requirement that 

sat liquid 
udp = 0 (i) 

we expect their isotherms to pass through ridges or "spines" of local 
maxima and minima defined by 

dp 

dv 
= 0 (2) 

Since the regions between these spines (or "spinodal lines" as they 
are called) is unstable, the state of real fluids cannot be brought all 
the way to either spinodal line. Molecular fluctuations will inevitably 
destabilize the fluid before the spine of instability is reached. 

We subscribe to the view that the spinodal limit is nevertheless a 
physically useful concept in that the equation of state of a real fluid 
must satisfy both equations (1) and (2). Furthermore, we have pre
viously shown [1, 2] that observations of homogeneous nucleation in 
liquids probably reach values quite close to the spinodal line. By 
providing an analytical demonstration that this is true, we will make 
it possible to specify the liquid spinodal in an equation of state for 
water. This is a key step in a program that we have undertaken (see 
[3]) to develop a fundamental equation that can be used in the met
astable regimes. 

1 This work was done while the first author was at the University of Ken
tucky. 

2 This work was done under the support of the Electric Power Research Inst. 
(EPRI Contract RP 678-1) with Balraj Sehgal as project manager. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division July 
15,1980. 

How Close to the Spinodal Line Can a Fluid Be 
Brought? 

The minimum work required to bring a fluid from a homogeneous 
nucleation temperature, T„, to the spinodal temperature, Ts, at the 
same pressure, p„, is given by the change of the thermodynamic 
availability between the two points, Aa. 

Aa = (h, - hn) - Tn (ss s„) (3) 

where the reference, or dead state, is specified as the pressure, pn, and 
the initial temperature, T„. Figure 1 shows this hypothetical process. 
Notice that we arbitrarily consider an isobaric process. If there exists 
a path requiring less energy, then the calculation based on the isobaric 
model will be conservative. 

Since the process from point (n) to point (s) is isobaric, equation 
(3) becomes 

Aa: I -fcp|aT, (4) 

and the problem of evaluating the minimum work reduces to that of 
specifying cp(T) in the neighborhood of the spinodal line. We know 
from elementary thermodynamic considerations that 

Limit , „ , Limit 
' T—T. r CpdT and 

rTscpdT 

JT T 
finite (5) 

Among the functions that satisfy these conditions are: cp~{Ts- T)~b 

where 1 > b > 0, and cp ~ ln(Ts - T). So too is any cp that approaches 
infinity at Ts as a power weaker than a linear function of (T — Ts). 

We can clearly form an upper bound on Aa by factoring out the 
largest value of (T - Tn)/T. Thus 

A = A T*~Tn CT> ,T 
^ ^ u p p e r bound ~ ^ ^ u ~ 1 CpUl (6) 

Substituting any one of the acceptable cp functions in equation (6) 
we obtain 

Aa„ = Dcp(TJ 
(Ts - Tn)* 

(7) 

where D is a number larger than unity. The value of Aau per molecule 
is then AOU/NA. 

The conventional homogeneous nucleation theory says that nu
cleation is virtually sure to occur when the critical work required to 
trigger nucleation is on the order of magnitude of 10kTn per nucleus.3 

It follows that 

WkTn iD cp(Tn) (Ts - Tn)* 

Nn NA Ts 

where Nn is the number of liquid molecules in the region displaced 
by a nucleus bubble. Then 

R 1 ( T s - T „ ) 2 10 

TnTs Dcp{Tn)Nn 

(9) 

* The background for this assertion is developed in the next section. 
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Fig. 1 Process of triggering nucleation from the point of homogeneous nu
cleation, n, to the point, s, on the spinodal line at the same pressure 

where the molar ideal gas constant, R = IINA. 
Consider next the order of magnitude of the three factors on the 

left side of equation (9): The term (10/D) < 10. R/cp clearly ap
proaches zero at the spinodal line, but we do not yet know how close 
Tn is to Ts. However, for water at 1 atm, R is 0.46 kJ/kg — K while cp 

is 4.2 kJ/kg — K at saturation and at least 2.5 times this value at Tn 

(see, e.g., [3]). Thus for water, R/cp < 0.04 and for other liquids it will 
be much less. Finally, Skripov [4] has calculated Nn for a variety of 
organic fluids at high pressure. He obtained numbers between 270 
and 1010 at his observed nucleation temperatures. For water at 1 atm, 
Nn increases to 4000. 

It follows that for water at 1 atm, (Ts — Tn)/Tn is substantially less 
than 0.01 and for organic substances the result should be still less 
owing to far smaller values of R/cp. Then in general 

Ts - Tn « VTj^ =* T„ (10) 

If a comparable argument were developed for the vapor phase 
spinodal line, an equation similar to equation (9) would result. But 
in this case, Nn can be very small because there are very few vapor 
molecules within a volume equal to that occupied by a nucleus 
drop. 

Equation (10) will therefore no longer be true. Nucleation thus 
occurs very close to the liquid spinodal, but we cannot expect it to 
occur anywhere near the vapor spinodal. This is exactly what we 
showed previously with experimental data in [1]. 

On L o c a t i n g t h e Sp inoda l 
The conventional nucleation theory tells us that (see, e.g., [4]): 

nucleation events 

, Nucleation events 

n r s 

molecule-collision molecules „ collisions 
N B 

m" s 

where the Gibbs number, Gb, is 

Gb = 
critical work to trigger nucleation 

kT 

(11) 

(12) 

The value of; at which nucleation absolutely must occur is the largest 
possible one. It corresponds with the minimum possible value of the 
critical work. 

One way of specifying the maximum possible value of; is to imagine 
that just one nucleation event occurs every relaxation-time within the 
population of liquid displaced by the nucleus bubble of radius, rc. 
Thus, 

collisions 

relaxation time B collisions. 

\M gm 
(13) 

NA molecules pf gm 

This calculation and the experimental data of Skripov, et al. (see, e.g., 
[5].) can be interpreted to give somewhat varying results, but a good 
upper bound appears to be in the neighborhood of: 

; ~ (10)-6 or Gb =* 11.5 (14) 

This corresponds with J en 1034 m~3 s_ 1 . 
The prediction of the spinodal line is then completed by substi

tuting this value of j in equation (11), using Frenkel's expression 
[6] 

critical work = 4irrc
 2<r/3 (15) 

(16) 

and a critical nucleus given by [4] 

rc = 2o-/[(l - Vf/vg)(pSBt - Pn)} 

Such predictions have frequently been offered in the past to predict 
homogeneous nucleation and they have worked fairly well at the 
spinodal temperatures that occur at positive pressures. These tem
peratures are usually in the range: 0.9 < Ts/Tc < 1.0 (see, e.g., [4]). 

A Modi f i ca t ion of t h e C o n v e n t i o n a l T h e o r y 
Equations (11) and (12) are based on the concept that nucleation 

will occur as the critical work approaches the order of magnitude of 
the kinetic energy of molecules, characterized by kT. We believe that 
the comparison should be made, not with the disturbance energy 

- N o m e n c l a t u r e . . 

o = isobaric, thermodynamic availability 
function, h - (Tdead state)* 

B = rate of molecular interactions or "colli
sions" 

b = exponent of (Ts — T) in a specific heat 
formula 

cp = molar specific heat at constant pres
sure 

D = a number on the order of unity 
Gb = the Gibbs number, critical work/char

acteristic energy of the fluid 
g = the Gibbs free energy, h — Ts 
h = molar enthalpy 
J = volumetric rate of nucleation events 
j = rate of nucleation events per molecular 

interaction 
k = Boltzmann's constant 
M = molecular weight 
N = molecules per unit volume at nucle

ation 
NA = Avogadro's number 
p = pressure 
R = ideal gas constant 
rc = critical radius of an unstable nucleus 
s = molar entropy 
T = temperature 
v = molar specific volume 
a, @, 8, y = constants in the Himpan equation 

of state (19) 

Ao, Aau = change in availability from (n) to 
(s). Upper bound on Aa 

p = density, 1/v 

Subscripts 

c = a property at the thermodynamic critical 
point (except as it appears in rc) 

f, g = the saturation liquid and vapor 
states 

n = a property at the point of homogeneous 
nucleation 

s = a property on a spinodal line 
sat = a property that is saturated at T = 

Tn 
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which can, in fact, vary enormously about the value of kT, but rather 
it should be compared with the fixed value of the energy required to 
separate one molecule from another. 

This energy can best be characterized as the potential well energy, 
e (see, e.g., [7]). This energy can be expressed in terms of the critical 
temperature as 

c =* 0.77 kTc (17) 

Thus we propose to alter equations (12) and (11) to read 

critical work 
Gb = — = 11.5 (18) 

Hi c 

Figure 2 shows the resulting homogeneous-nucleation/spinodal line 
calculated from equations (11,15) and (16), based on both equations 
(12) and (18). They are presented on pressure-temperature coordi
nates and the saturated liquid-vapor line is included for comparison. 
The two curves are nearly identical in the range of positive pressure 
because Ts remains close to Tc, but the curves diverge strongly at 
lower temperatures. We must next provide experimental evidence 
to show that the curve based on e or kTc is superior to that based on 
kT. 

The Approximate Location of the Spinodal Line by 
Extrapolation 

The isotherms of a correct equation of state must match the known 
isotherms of water and steam in the stable regimes, it must satisfy 
equation (1), and it must define the two spinodal lines correctly. We 
seek an equation of state that is cubic in volume like the van der Waals 
equation, and which can be fitted to these facts, all of which are known 
except perhaps the location of the spinodal line. We cannot use the 
van der Waals equation for this purpose because it has no free con
stants and it is only exactly true for a fluid with a critical compress
ibility equal to %. 

We therefore used the Himpan cubic equation of state [8] 

7 RT 

v-P (u-a)(v-8) 
(19) 

to fit the known facts. These facts consist of equation (1), the 1970 
U.K. steam table vapor density and (dp/dv)rM data [9], and very 
precise liquid density data from Skripov's group [10-12] which extend 
into the superheated liquid regime. The Himpan equation has been 
proven to display the essential features of a correct equation of state 
and to give a good representation of real fluid data in the stable re
gimes. With four free constants it can provide a very close fit to any 
given isotherm. 

We have used it to fit 38 different isotherms in the range 130°C ^ 
T < 300°C and 0.63 < p < 111 bar. A modified Marquart subroutine 
for a nonlinear least squares [13] was used to evaluate a,(},8, and y in 
each of the 38 cases. Each isotherm was then differentiated to locate 
the spinodal pressure in accordance with equation (2). 

The resulting spinodal points are compared with the two homo
geneous nucleation/spinodal line predictions. The points compare 
quite well with the prediction based o n ; = 10 - 5 or Gb = 11.5 and the 
use of kTc in place of kT. There is increasing scatter in the extrapo
lation points as the temperature is reduced. This occurs because, as 
the temperature becomes less, minor discrepancies in the measured 
density at positive pressures are increasingly influential in the ex
trapolation. 

Figure 3 shows a typical Himpan isotherm and the equation that 
defines it. The liquid data of Evstefeev [11] to which it is fitted in the 
liquid regime are included and the very high accuracy of the fit is given 
in the inset. 

We therefore propose that, within a few degrees Celsius, the new 
homogeneous nucleation prediction can be used to specify Ts at a 
given pressure. Our future program of research will be to use this 
equation to re-establish a, ft, 5, and 7 for each isothermal equation. 
We can then use these resulting newly created data within the met
astable regimes to rebuild the Keenan et al. fundamental equation 
[14] for water in such a way as to correctly account for the metastable 
regimes. 

Q. 

reduced temperature,T/Tc 

Fig. 2 Comparison of the present prediction with the conventional prediction 
and with data extrapolations 

- locus of saturated states 

o data from [l l ] 

Fig. 3 A typical Himpan equation Isotherm 

Conclusions 
1 The difference between the highest possible liquid homogeneous 

nucleation temperature and the liquid spinodal temperature at the 
same pressure is negligible in comparison with the spinodal temper
ature. Therefore we can use the homogeneous nucleation temperature 
as a close approximation to the spinodal temperature. 

2 The first conclusion does not apply in the metastable vapor 
regime. 

3 The appropriate energy to use in the denominator of Gb appears 
to be kTc instead oihT. 

4 T h e sp inoda l line for l iquid water is given to good accuracy 

by 

10~ 5 = exp 
16TT<T3 

3kTc 1 -
vl 

(Psat - Ps ) 2 
(20) 
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Semi-Transparent Gold Film as 
Simultaneous Surface Heater and 
Resistance Thermometer lor 
Nucleate Boiling Studies 
A large (22 X 25 mm) semi-transparent thin film of gold, approximately 400 A in thick
ness, is deposited on a glass substrate for simultaneous use as a heat source and resistance 
thermometer. Construction techniques and calibration procedures are described, and a 
sample application to a transient boiling process is included with simultaneous high 
speed photographs taken through the thin film from beneath. 

Introduction 
In a study of transient and steady nucleate boiling of liquid nitrogen 

(LN2) and Refrigerant 113 (R113) under reduced gravity [1], it was 
desired to observe, by high-speed photography, the formation, growth 
and departure of vapor bubbles from beneath the heating surface and 
to measure simultaneously the instantaneous spatial average surface 
temperature without substantial interference with the phenomena. 
The imposed disturbances, for which the responses were sought, were 
step increases in the heat flux and a sudden removal of body forces 
in a drop tower. 

A semi-transparent gold film on glass was selected as a means of 
meeting these objectives. The thin film acts as an electrical resistance 
heat source and as a resistance thermometer with negligible heat ca
pacity. This paper presents the techniques used to achieve a desired 
degree of stability and precision in temperature measurement for 
nucleate boiling applications. For the transient processes, where the 
instrumentation introduced the largest uncertainties, accuracies in 
surface temperature measurement of ±(0.5 — 0.9) K were obtained 
over the range of 77 K to 370 K. 

Previous Work 
The use of semitransparent thin films of Sn02 on glass as a heat 

source for boiling has been reported [2,3], where vie wing of the boiling 
process from beneath was desired. This type of surface has been 
commercially available from several manufacturers and is very 
durable. Unfortunately, the temperature coefficient of resistance of 
SnC>2 is too small to permit its use as a resistance thermometer. Thin 
films of chromium and nickel (200 to 1500 A thick) on glass have been 
successfully used as resistance thermometers for measurements of 
average surface temperature in order to calculate the heat transfer 
coefficients with condensing organic vapors [4], in the range between 
room temperature and 125°C. Accuracies approaching 0.01°C have 
been reported over short periods of time [5]. 

For the accurate measurement of temperature it is important that 
the temperature coefficient of resistance, defined as a in equations 
(1) and (2), be reasonably large. 

_ J_dR 
a~R0dT 

If a is constant this may be integrated to 

R(T) = R0[l + a(T - T0)] 

(1) 

(2) 

For thin films the resistance R may be expressed in terms of ohms-
per-square1 in cases where the thickness of the film is an uncertain 
parameter, and will be termed specific resistance. The resistance 

1 The resistance of any unit square of a thin film. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division July 
7,1980. 

characteristics of thin films may differ from those of their bulk metals 
[6]. For gold thin films of thickness between 1900 A and 2500 A the 
resistivity was found to lie between 1.2 and 1.4 times that for the bulk 
(i.e. p/pb — 1.2-1.4) [7]. On the other hand, the temperature coefficient 
of resistance for gold thin films was found to lie in the range alct\, = 
0.47-0.82 at room temperature [8]. 

The resistance of thin films as deposited is generally unstable in . 
that it changes with time, a process designated as aging. The insta
bility has been attributed to the state of strain that occurs within thin 
films as they crystallize during deposition, and to the relieving of this 
strain, along with the agglomeration that occurs within the structure 
of the film as it becomes exposed to higher temperatures [7, 8]. 
Heating of the thin films for some period of time tends to accelerate 
the aging (or annealing) process by promoting the removal of strains. 
For gold this begins at about 150°C, and is accompanied by a decrease 
in resistance. Very thin films, on the order of 200 A in thickness, ag
glomerate when heated above the recrystallization temperature. For 
gold this takes place at 450°C and is accompanied by an increase in 
resistance [8]. A near-equilibrium condition between these two effects 
may be attained by appropriate annealing, so that subsequent heat
ings below this annealing temperature will cause little or no change 
in the film structure. The annealing process could be eliminated if the 
substrate was heated during deposition (500°C for gold). 

The influence, on film resistance, of parameters such as annealing 
time and temperature, film thickness and substrate temperature 
during deposition were investigated for 24 different metals [7]. Re
ductions in resistance of 25-30 percent were observed due to an
nealing, with a preferred annealing temperature found specific to each 
metal, and influenced somewhat by film thickness. The influence of 
film thickness and annealing temperature on the temperature coef
ficient of resistance was studied over the range of thickness 75-2000 
A and temperature 25-600°C, for various pure and alloy metals de
posited both by sputtering and vaporization [8]. No definite corre
lation was found between a and the film thickness, but the type of 
substrate and the method of deposition were found to have a signifi
cant effect on a. 

Gold grids 0.1-0.25 mm wide and 4-6 fim thick were used to mea
sure surface temperatures of glass, vycor and fused silica specimens 
up to 1160 K [9]. The temperature coefficient of resistance was found 
to be dependent on the grid thickness and annealing temperature 
level, and repeatability of calibration was reported to be within 2 
percent. 

Apparatus 
A number of metals were considered for the thin film application 

reported here. These included nickel, stannous oxide, platinum, 
aluminum and gold. Gold was selected for use as the semi-transparent 
resistance heater and resistance thermometer, having the rapid re
sponse required for the transient nucleate boiling studies, providing 
a suitable balance between transparency, specific resistance and 
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temperature coefficient of resistance, and being reasonably stable 
after annealing. 

Pyrex glass surfaces 25 X 38 X 5 mm were first completely covered 
on one surface with gold, approximately 300-400 A in thickness, by 
vacuum deposition. The techniques are well described in the literature 
(e.g., [6]). The two opposite ends were then coated with a relatively 
thick layer of silver 7 mm wide to serve as the contact area for the 
current and voltage taps, leaving a 25 X 25 mm effective test surface 
area. The appropriate coating thickness was determined on a trial-
and-error basis as a compromise between sufficient transparency and 
a reasonably low specific resistance. Relative thickness of the film 
during deposition was monitored with a mass sensitive crystal oscil
lator mounted adjacent to the test surface and receiving the same rate 
of deposition as the glass substrate. The surfaces were then oven an
nealed at 275°C for 15 min. In several instances the surfaces were 
annealed in reducing atmospheres of N2 with 3 percent H2 to deter
mine the influence, if any, of oxidation. No effect was detected, so this 
procedure was abandoned. The effect of annealing on the measured 
film properties will be presented in the next section. 

Of particular importance was the technique by which the current 
and potential connections were made to the thick silver contacts on 
the ends of the test surface. Figure 1 shows the final arrangement that 
was evolved and found satisfactory over the range of temperature 80 
K to 350 K. The glass substrate was supported in a recessed Teflon 
base having an opening under the central part in order to view the 
surface from beneath. The glass was clamped only over the silver 
contacts, beginning with a brass clamp which exerted pressure onto 
a Teflon bar and hence onto a gold foil strip 0.025 mm thick, which 
itself pressed onto the silver and acted as the current-carrying con
ductor. The soft Teflon ensured a large surface contact area between 
the gold foil and silver strip with minimal electrical contact resistance. 
For the potential contact, a small piece of the current-carrying gold 
foil was cut out and an independently supported and electrically in
sulated gold foil potential contact was formed. Since this contact 
carried negligible current any contact resistance present here had 
negligible effect. 

Calibration 
Because the thickness of the thin films could not be reproduced 

with sufficient accuracy it was necessary to calibrate each surface 
individually. Figure 2 shows the electrical circuit, used for both cali
bration and test runs, which provides for the measurement of current 
and voltage across the test section. During calibration it is important 
that the heat generated within the thin film be negligibly small so that 
the surface is at the same temperature as the medium in which it is 
immersed. A relatively large standard resistance for current mea
surement, Rs, is therefore necessary to achieve the desired degree of 
precision in the corresponding voltage measurement, and is shown 
in Fig. 2. Calibration currents up to 95 ma, which corresponds to a heat 
flux level of 5 W/m2 for the system used, produced negligible self-
heating effects. To achieve the stability of the current necessary at 
the higher levels of current used for the boiling tests, up to 10 amperes, 
all external resistances were immersed in oil for heat dissipation, and 
all resistance changes in the circuit were made with heavy duty copper 
knife switches. 

Boiling heat transfer studies were conducted using both R113 and 
liquid nitrogen; therefore, it was necessary to calibrate the test sur
faces in two different corresponding ranges. Calibrations over the 
range of 295-370 K were performed for R113 using a thermostated 
silicon oil bath in which the temperature was held constant with 
±0.005 K. Liquid temperature was measured with a platinum resis
tance thermometer and Mueller Bridge Assembly, with an uncertainty 
of ±0.01 K. For LN2, temperature variations over the range 76-90 K 

POTENTIAL LEAD. 
GOLD FOIL 
0 0 2 5 m m 

BRASS CLAMP 

TEFLON 

INSULATION TAPE 

SILVER F ILM 
*—THIN GOLD F ILM 

SECTION A - A 
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POTENTIAL 
CONTACT 

- P O T E N T I A L LEAD 

Fig. 1 Current and potential connections used on thin film 

12-36 V D.C. O-2400f l 

—\M(v- • / e -rfK » o - J * V -

± 0 . 0 4 % 

TEST 
SURFACE 

R s - . 50729 0 
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FOR FOR 
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RUN 

Fig. 2 Calibration and power circuit 

were obtained by regulating the pressure of saturated LN2 in a pres
sure vessel. The temperature of the LN2 was measured with a previ
ously calibrated thermocouple in conjunction with a precision po
tentiometer, with a total uncertainty of ±0.03K. 

The resistance was calculated from Ohm's Law, using the notation 
of Fig. 2. 

RT = -—xRs 
Es 

(3) 

For calibration and steady-state boiling test runs the precision po
tentiometer was used, with uncertainties of ±0.015 percent in the 
measurements of Es and Er- For the transient tests a 7700 series 
eight-channel Sanborn recorder with Model 8803 high gain d-c am
plifiers was used for recording the transient values of Es and Ef. By 
calibration of the recorder with the potentiometer prior to and fol
lowing each test, it was possible to measure Es and Er with uncer
tainties estimated to be no greater than ±0.06 and ±0.02 percent of 
the measured values, respectively. 

The uncertainties in ET, ES and Rs were next combined, using the 
procedure described by Kline and McClintock [10], to provide the net 
uncertainty in the computed resistance RT- For the calibration of the 
surface the resulting uncertainty in RT is ±0.033 percent, while for 
the steady-state and transient test runs it increases to ±0.045 and 
±0.073 percent, respectively. The increases in uncertainty arise be
cause of the larger uncertainties in the current-measuring resistance 
Rs and in the voltage-measuring instruments. From these uncer
tainties and the uncertainties in calibration temperatures mentioned 
previously, the maximum uncertainty in the slope dR/dT of the cal-

-Nomenclature-

A = angstroms 
E = voltage 
R = resistance 
T = temperature 
a = temperature coefficient at resistance 

tn = uncertainty of measurement n 
p = resistivity 

Subscr ipts 

b = bulk 

c = calibration point 
m = measured 
0 = reference 
R = resistance 
s = slope 
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ibration curves is calculated as ±0.6 percent of the nominal slope at 
the R113 temperature levels and ±1.6 percent of the nominal slope 
at liquid nitrogen temperature levels. 

Calibration curves for one test surface in the liquid nitrogen tem
perature range are given in Fig. 3, and demonstrate the effects of 
annealing. The two upper curves were obtained prior to annealing, 
and the typical decrease in resistance with aging should be noted. A 
decrease of 17 percent in the specific resistance occurs as a result of 
annealing for 15 min at 275°C, and is accompanied by a 49 percent 
increase in the slope dR/dT, and a 78 percent increase in the tem
perature coefficient of resistance a. 

After the annealing process, shifting of the calibration curve con
tinues to take place, but with the resistance now increasing with time 
and at a slower rate, as may be seen in Figs. 4 and 5. This has also been 
observed with thicker films of gold [8], and is postulated as being due 
to agglomeration. 

Three complete calibrations of one test surface at liquid nitrogen 
temperature levels are given in Fig. 4. The first two sets are separated 
by one day, and the data virtually overlay each other. The third 
complete calibration took place 203 days later, with an increase of 6 
percent in the resistance level, and an apparent increase of 0.5 percent 
in the slope. This, however, lies within the ±1.6 percent uncertainty 
in the slope measurement during calibration. Two single-point cali
brations were made before and after the third complete calibrations, 
as indicated. Each of these two points itself consists of two single point 
calibrations, separated by a series of boiling tests lasting about four 
hours. No detectable shift in the single point calibrations occurred 
during each of the four-hour periods, and hence two more points 
overlap the two points plotted. 

Two complete calibrations of one test surface at near room tem
perature conditions are shown in Fig. 5, separated by one day. An 
upward shift of 1 percent occurs, with a 1.3 percent decrease in slope. 
This change in slope is just slightly greater than the maximum un
certainty of ±0.6 percent in each of the slopes at room temperature 
levels. The resistance level at room temperature here is in substantial 
agreement with the measurement of Belser [7] using gold films 400 
A in thickness, also at room temperature. 

Based on the experimental observations above and elsewhere [5] 
that, after annealing, the calibration curves are linear and that suc
cessive calibration curves are simply displaced parallel to each other, 
a new calibration curve may be determined by a single new calibration 
point once a complete calibration has been made. 

It is now possible to convert the uncertainties in resistance R and 
slope dT/dR into a temperature uncertainty. Considering the maxi
mum possible uncertainty in each case and neglecting the products 
of the small uncertainties, the following expression results: 

f T : 
MTm - Te) Rm + Re 

Rm ~ Re 
(4) 

where Tm = temperature to be measured, Rm = measured resistance 
at temperature Tm, Tc = temperature at single calibration point, Rc 

= measured resistance at temperature Tc, en = fractional uncertainty 
of resistance measurement, fs = fractional uncertainty of slope dT/dR. 
Calibration took place at 300 K and using the values of €^ = 0.00045 
and es = 0.006 presented earlier for steady-state boiling tests, a 
measurement of a nominal 20 K above this single point calibration 
temperature would have an uncertainty in {Tm — Tc) of ± £ T = ±3.0 
percent. For (Tm — Tc) = 20 K, the uncertainty in Tm would be ±0.6 
K plus the uncertainty of Tc. Equation (4) gives the maximum un
certainty in that the directions of the uncertainties are taken so as to 
produce the largest possible value of er- If the procedure of reference 
[10] is followed, which introduces a probability into the directions of 
the uncertainties when combining them, the uncertainty in the ex
ample above becomes ±0.4 K (instead of ±0.6 K) in Tm for (Tm — Tc) 
= 20K. 

Complete calibrations at LN2 temperature levels were made with 
five different test surfaces. The resistance-temperature slope dR/dT 
(= aRr, from equation (2)) for each of these is plotted versus R in Fig. 
6. The differences in resistances for the various surfaces are primarily 
consequences of differences in film thickness. The slope dR/dT in-
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Fig. 3 Calibration in liquid nitrogen, showing typical effect of annealing 
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Fig. 4 Calibration at LN2 temperature levels, showing stability of temperature 
coefficient of resistance 
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Fig. 5 Calibration at ambient temperature levels 

creases approximately linearly as R increases, which means that the 
temperature coefficient of resistance is approximately constant, 
calculated as a = 4.1 X 10 - 3 K - 1 . This is almost the same as the value 
for bulk gold at LN2 temperature levels ab = 4.0 X 10 _ 3K - 1 , as cal
culated from the data in reference [11]. At 77.8 K, we thus have the 
ratio a/otb = 1.03. 

The data tabulated in reference [11] also give ab = 4.0 X 10~3K_1 

at room temperature, which is somewhat different from the value ab 
= 3.4 X 1 0 - 3 K - 1 listed in reference [8]. 
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place both in the glass substrate and in the liquid, followed by tran
sient natural convection in the liquid. Then as nucleate boiling spreads
across the surface, the average surface temperature decreases until
a steady-state condition is reached after about one second. This time
period depends on factors such as heat flux input and surface orien
tation. Corresponding transient results were also obtained using liquid
nitrogen, both at standard gravity and zero gravity.

Further details of experimental results are presented in reference
[1]. During the course of the research it was learned, on an admittedly
unplanned basis, that it was not possible to operate at heat flux levels
greater than about 75 percent of the critical heat flux level without
damaging the thin film, most likely because of the low heat capacity
and thermal conductivity of the film and/or the substrate [12].

Conclusions
1 Semi-transparent thin films of gold, approximately 400 Ain

thickness deposited on an insulating substrate, can be used simulta
neously as a resistance thermometer and as a heating element for
relatively high power densities, sufficient to boil LN2 and R113 vig
orously. The temperature range successfully covered to date is 77 to
370K

2 The transparency permits viewing from beneath the boiling
surface with simultaneous measurement of the temperature at the
liquid-solid interface, not at some point removed. The low heat ca
pacity of the thin film also ensures rapid response, not possible with
thermocouples.

3 These gold films appear to have the same temperature coeffi:
cient of resistance as the bulk material, and remained quite stable once
the surface was annealed.

4 Temperature measurements were attainable under these con
ditions with a maximum uncertainty between ±0.3 and ±0.9 K, de
pending on the temperature level and upon the precision of the
voltage-measuring instrument used.
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Sample Application
An example of results, using the gold thin film surface as a resis

tance heater and for surface temperature measurement with nucleate
boiling, are shown in Fig. 7. The liquid, R113, is saturated at atmo
spheric pressure (approximately 321 K), and no heat transfer is taking
place initially. At zero time, proceeding from right to left, a doc current
of 4.85 amperes is suddenly passed through the thin film. The re
cording of the transient current and voltage drop across the surface
is shown in the center of Fig. 7, and the corresponding average surface
temperatures computed from these are plotted. High speed motion
pictures were taken simultaneously through the semi-transparent gold
surface, and are shown along the top. It may be noted that nucleate
boiling does not appear until about 0.5 seconds after the onset of
heating, corresponding to a heater surface superheat of approximately
31 K During this interval transient heat transfer by conduction takes

Fig. 7 Typical transient surface temperatures with bolllng heat transfer of
R113 at atmospheric pressure
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Prediction of Transient Inception of
Boiling in Terms of a Heterogeneous
Nucleation Theory
Transient boiling in water and Freon 113 with various heater surfaces was investigated
experimentally with step power inputs. It was observed that the inception or onset of boil
ing depends not only on the temperature, but is time dependent as well. This dependence
can be explained in terms of a heterogeneous nucleation theory based on the homogeneous
nucleation theory. The influence of the heater surface was accounted for by a nucleation
factor which is liquid-specific. With this factor and one experimental value of inception
for a given system, the time dependence of inception temperature can be computed.

Introduction
An understanding of factors which lead to the inception of boiling

is of importance in the design of cooling systems associated with phase
transition. Transient boiling can be found for example in cryogenic
storage tanks with a loss of vacuum insulation. It is observed [1) that
the transient superheat can be far in excess of that required to initiate
boiling with steady-state heating. This results in high pressure tran
sients upon phase change. In those cases, it is necessary to predict the
superheat required to initiate boiling. In contrast with most works
on transient boiling, which deal with the microgeometrical properties
of the wall used in the tests, the purpose of this investigation is to
obtain generalized data for transient inception of boiling and to de
termine the characteristic parameters which would be applicable to
other boiling systems. A step power input is used, being not only the
severest transient possible, but the simplest to prescribe.

Experimental
Six combinations of fluid/surfaces were investigated, in order to

obtain results common to different systems.
Test liquids. Water and Freon 113 at saturation temperature and

atmospheric pressure were chosen because oftheir significantly dif
ferent properties, particularly surface tension.

Test walls: Three types of heater/resistance thermometers were
used:

• Thin gold-film, measuring 20 X 2 mm and 400 Ain thickness,
vacuum deposited on a glass substrate 50 X 40 X 5mm. The fabrica
tion of this type of heater is described in reference [2). Electrical
contacts are made on the widened ends of the heater (Fig. 1). Aging
and calibration procedures are given in references [2] and [3).

• Platinum wire 0.15 mm dia and 24 mm long.
• Copper wire, 0.2 mm dia and 24 mm long.
The roughness of the heater surfaces varied from 0.5 to 8 JLm

rms.
Test Section. The heaters were positioned horizontally ap-

. proximately 5 cm below the surface of the liquid in the boiling vessel.
The experimental apparatus consisted of: (1) a mechanical facility
(Fig. 2), which includes a test vessel equipped with glass windows. The
vessel is mounted in a vacuum chamber for thermal insulation, and
is connected to a system of valves, which allow: (i) degassing of system
prior to filling, (ii) filling the vessel, (iii) distilling the liquid, (iv)
calibrating the heater resistance-surface temperature and (v) oper-
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ation of the experiments at subatmospheric pressure, (2) an optical 
facility, comprising a vibration-dampened support on which the 
vacuum chamber and the test vessel are mounted, a holographic in
terferometer and a high-speed camera. This configuration allows the 
optical determination of the onset of convection and the inception 
time, which is defined as the time required for the onset of nucleation 
from the initiation of heating, (3) the transient heating circuitry (Fig. 
3). The current through the heater is controlled by resistance Rv. The 
input power is maintained constant during the run. Measuring the 
voltages across the heater and a standard resistance allows the de
termination of the instantaneous surface heat-flux and spacial average 
wall-temperature, (4) the instrumentation (Fig. 4), which consists of 
two different circuits, one for calibration of the heaters (current 
source, DVM's, potentiometer), and one for the transient runs 
themselves (main power supply, UV-recorder, oscilloscope). The 
synchronization device in Fig. 4 performs the following run sequence: 
(i) upon start, to accelerate the UV-recorder (0.2-4 m/s) and (ii) si
multaneously switch on the power supply and trigger markers on the 
film and on the UV-paper to locate the beginning of the heating pe
riod. 

The following results were obtained with each of the six surface-
fluid combinations: 

• steady-state boiling curve Q"ss versus ATss 
• wall-superheat A T ( T ) with Q"ss as parameter 
• heat flux to fluid Q" versus time T with Q"ss as parameter 
• transient boiling curve Q versus AT with Q"ss as parameter 

R e s u l t s 
Figure 5 shows the transient wall superheat versus time curves with 

different heat fluxes applied to the thin-film in Freon 113. Since the 
heat flux is slightly time dependent (5 percent variation), it was 
necessary to characterize this parameter by its stationary state Q"ss-
The peaks of these curves, marked with IB (incipient boiling) in Fig. 
5 are the points of inception of boiling. The minimum incipient su
perheat for this system is ATssi — 50 K, below which a phase change 
does not occur. As the heat flux is increased, it is important to note 
that the inception time decreases and higher superheats are required 
for the inception of boiling (up to 90 K at 0.9 s). Inception superheat 
is thus not constant for a given system but is time dependent (dotted 

line, Fig. 5). The high superheats are typical for smooth walls and test 
liquids of low surface tension [4], This results in an explosive inception 
causing the superheat to decrease abruptly, in this case, to approxi
mately 15 K for steady-state boiling. 

With water, on the other hand, the formation of vapor occurs 
"smoothly", as shown in Fig. 6 for the system platinum wire/water 
(points marked with IB). The inception superheat is lower than the 
associated steady-state boiling temperature, resulting in a further rise 
of the wall superheat even after the onset of boiling. As with the sys
tem thin film/Freon 113, it was found that the inception superheat 
is increased as the inception time is decreased (dotted line in Fig. 6). 
This fact was also observed in liquid nitrogen [5], but no explanation 
for this could be found in the common literature. The same result was 
obtained with all remaining combinations of test liquid/heater wall, 
regardless of the wall's microgeometrical characteristics, orientation, 
gravity fields [5]. A full report of experimental results is given in ref
erences [3, 5]. 

A n a l y s i s 
To explain the time dependence of the inception superheat, it 
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A = nucleation work, J 
a, b = constants 
F = nucleation factor, defined by equation 

(1) 
h = Planck's constant, h = 6.6 X 10 - 3 4Js 
J Enucleation rate, cm _ 3 s _ 1 

k = Boltzmann's constant, k = 1.38 X 10~23 

J/K 
n = molecules/volume c m - 3 

p = pressure, Pa 

Q" = heat flux, W/m2 

r = bubble radius, m 
R = electrical resistance, ohm 
T = temperature, K 
AT = superheat, K 
v = specific volume, m3/kg 
X = heat of vaporization, J/kg 
<r = surface tension, N/m 
T = time, s 

Subscripts 
c = critical 
het = heterogeneous nucleation 
hom = homogeneous nucleation 
IB = incipient boiling 
£ = liquid 
S = saturation 
SS = steady-state boiling 
SSI = steady-state inception 
v = vapor 
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Fig. 5 Transient superheat A T versus time T with different heat-fluxes Q"ss 
(system thin-film/Freon 113, Ts = 320 K, p = 1 bar). Inception points are 
marked with (IB) 
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Fig. 6 Transient superheat A T versus time r with different heat-fluxes Q'Ss 
(system platinum-wire/water, Ts = 373 K, p = 1 bar). Inception points are 
marked with (IB) 

seemed appropriate to consider the phase transition as a physical 
process in the liquid. The analysis of the microgeometry of nucleation 
sites at a heating surface is commonly found in the boiling literature 
[6, 7], generally in conjunction with some model for a transient ther
mal boundary layer as in reference [8]. Such an approach was con
sidered impractical in the present work for the following reasons: With 
the several test surfaces used and with the different transient incep
tion superheats observed for any one test surface, any measured cavity 
dimensions would have no significance; free convection was present 
in all tests [3,9] and contributes to a large error in applying the con
duction equations to compute the temperature distribution in the 
liquid boundary layer; finally it is believed that the consideration of 
microgeometrical characteristics of the wall surface would be re
stricted to a particular surface only. A generalized approach was 
therefore undertaken with the aim of obtaining a characteristic 
number which would be applicable to all systems tested. 

The energy level required for the phase transition in a liquid is given 
by a homogeneous nucleation theory [10] in terms of Ahom (homoge
neous nucleation work). With this theory, the homogeneous nucle
ation temperature for water and Freon 113 are computed to be ap
proximately 540 and 434 K, respectively. Referring to Fig. 5, the in
cipient superheat with the thin film in Freon 113 can be in excess of 
90 K, a value close to the 110 K required for homogeneous nucleation, 
and decreases to 50 K for long inception times. The dotted lines in 

Figs. 5 and 6 thus show that by increasing the heat flux, and implicitly 
decreasing the inception time, it is possible to initiate boiling at all 
superheat values from the homogeneous nucleation temperature (even 
with a wall) down to the minimal required inception temperature 
Tssr, which is a system variable. 

In an attempt to incorporate the influence, on nucleation time, of 
system variables such as properties and microgeometry of the heated 
surface and convection effects, a "nucleation factor" is introduced 
in the equations of the homogeneous nucleation theory, defined by 

F = (AhetMhom) (1) 

Ahet is the work required to activate a nucleation site in a heteroge
neous circumstance. The variation in F then corresponds to a boiling 
inception temperature TIB ranging from Tssi to T^ora. 

For a liquid at a pressure Pe and a superheat temperature T, which 
produces a "normal" saturation pressure Ps (for a vapor bubble r = 
«>), for thermodynamic equilibrium the critical spherical bubble size 
rc is given by 

Ei. 
Pe' 

1 + -
2<r 

rcPp 
(2) 

The only assumption in equation (2) is that the system state is far 
enough from the thermodynamic critical state so that vv » U£. A 
further product of this assumption is t ha tP s = Pu, the vapor pressure 
within the bubble. For nucleation to occur the bubble formed must 
exceed the critical bubble size given by equation (2) by at least one 
molecule. The expression of Fisher [11] for the homogeneous nucle
ation rate of bubbles of critical size, neglecting the term for the free 
energy of activation for the motion of an individual molecule of liquid 
past its neighbors into or away from the bubble surface, is given by 

nhT 
J_i!2±g-Uhom/fcT) 

h 
where 

•Aho: - 7 T O T c
2 

(3) 

(4) 

Nucleation will occur when a bubble of critical size forms per unit 
volume in a reasonable time, say T S. This T will be termed the nu
cleation time, and neglects the time required to achieve a steady state 
of embryo distribution in any transient process. In equation (3) then, 
J oc 1/T, and for our present purposes the proportionality will be taken 
as an equality. For the heterogeneous nucleation case, replacing Ahom 
in equation (3) by Ahet of equation (1), with equations (2,4) and the 
Clausius-Clapyron equation, and u0 » ve the resulting expression 
relates the nucleation time r, the nucleation factor F, and the su
perheated liquid temperature T 

T-Ts 'PejA 
X )T=T„ 

In 

l&ir^F 
,1/2 

P^23ferin 
nkTrl + 1 - 1 

(5) 

The application of a homogeneous nucleation theory to the heter
ogeneous case may be viewed in the following way: Homogeneous 
nucleation occurs as a result of random fluctuations which produce 
local "vapor clusters". The probability that a cluster of an appropriate 
critical size will form is a function not only of the temperature level 
of the fluid but of the size of the system of superheated liquid under 
consideration as well. The system consisting of the superheated 
thermal boundary layer is considered to be sufficiently large so that 
a nucleation density J = 1/r implied in equations (5) and (3) triggers 
the onset of boiling. Since the heterogeneous nucleation takes place 
in the fluid adjacent to the solid surface, the fluid temperature is taken 
to be the wall temperature. 

For a given fluid-surface combination, then, setting T = TIB and 
T = TIB from measurement, F in equation (5) becomes a function only 
of the fluid properties. This is a continuously varying characteristic 
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Fig. 8 Nucleation factor F versus inception temperature 7 for water (p = 
1 bar, 7S = 373 K) 

number, which can serve to correlate, for various heater surfaces, the 
relationship between the inception temperature and inception time 
for transient boiling processes. Different surfaces are located at dif
ferent F-ranges. F has the following extremum values: 

F = 1; TIB = Thom (homogeneous nucleation) (6) 

F = 0; TIB = Ts (no nucleation possible) (7) 

F was computed using the experimental results such as Figs. 5 and 
6 for TIB and TIE, using the "macroscopic" surface tension [10]. 

Discussion 
The F-curves for water and Freon 113 thus obtained are shown in 

Figs. 7 and 8, with additional data from [5] for Freon 113 and from [12] 
for water. The latter data were obtained with exponentially increasing 
power inputs, which perhaps accounts for some of the scatter. The 
straight lines are approximations to the data with F = a exp(6T) for 
the different combinations used. Setting those approximations in 
equation (B) one obtains TIB = /(TIB), which gives the relationship 
between inception temperature and inception time for a particular 
system. 

Of particular interest is the direct comparison of the F-curves for 
the two different liquids used. Since F is already a dimensionless 
parameter, it remains only to define a dimensionless inception boiling 
temperature which will satisfy equations (6) and (7), as (TIB ~ Ts)/ 
(Thom ~ Ts). The experimental results are shown as the solid curves 
in Fig. 9. Also, shown are the corresponding uncertainty limits of the 
experimental measurements. 

Since the measurements cover rather different parts of the di
mensionless temperature, an extrapolation was performed for each 
fluid, using similarity considerations which would also satisfy equa
tions (6) and (7), by taking the ratios of the F's for the two fluids with 
equation (5). The results are shown as dashed lines in Fig. 9. The 
typical shape of F for (T/S - Ts)/(Thom - Ts) < 0.2 shows the as
ymptotic decrease on the log scale to F = 0, with corresponding larger 
uncertainties at low incipient superheats (as in the runs with water 
or steady-state boiling). In transient boiling with Freon 113, the errors 
in the determination of F are lower, since the superheats are generally 
higher. Thus, it is possible to explain the time dependence of the in
ception superheat in that a shorter inception time requires a higher 
temperature (kinetic energy) level. 

Data are reported [13] on the nucleation resulting from the pulse 
heating of a platinum wire 0.02 mm dia in water at atmospheric 
pressure. Nucleation occurred at very near the homogeneous nucle
ation temperature in TIB = 0.03 ms, placing this data point in the 
upper right hand corner of Fig. 9. The pulse heating of platinum wires 
with a variety of organic liquids also showed agreement with the ho
mogeneous nucleation theory [14], expressing this factor in terms of 
contact angles on the surface. Such an approach was not successful 
in correlating the various data presented here. 

The prediction of the heat flux at the inception of boiling is not 
carried out here since it is system dependent. However, since TIB = 
/(TIB) is known, one can apply the usual equations of transient con
duction and free convection to determine the inception heat flux. 

In the experimental work conducted here, the liquids were degassed 
as extensively as appeared practical, although no quantitative mea
surements of dissolved gases were made. It is conjectured that the 
effect of dissolved gases would be to move the nucleation factor F to 
lower values in Fig. 9. 

Conclusions 
Transient inception of boiling was explained in terms of a hetero-
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Fig. 9 Nucleation factor F versus dimensionless inception temperature for 
Freon 113 and water ( 7 = 7S, p = 1 bar) 
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geneous nucleation theory based on the homogeneous nucleation 
theory. A liquid-dependent nucleation factor is introduced as a 
function of dimensionless inception temperature and determined 
experimentally for water and Freon 113. With this factor, it is possible 
to consider the inception as a transient nucleation process, and to 
compare the performance of different systems by a single F-number. 
In addition, in spite of the variability of F, homogeneous and heter
ogeneous nucleation, and transient and steady-state boiling can be 
considered as essentially the same process. 
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Critical Heat Flux Experiments and 
Correlation in a LongP Sodium-
Heated Tube 
Critical heat flux (CHF) experiments were performed in the Steam Generator Test Facili
ty (SGTF) at Argonne National Laboratory for application to liquid metal fast breeder 
reactor steam generators. The test section consisted of a single, straight, vertical, full-
scale LMFBR steam generator tube with force-circulated water boiling upwards inside 
the tube heated by sodium flowing countercurrent in a surrounding annulus. The test sec
tion tube parameters were as follows: 10.1 mm i.d., 15.9 mm o.d., material = 21U Cr — 1 Mo 
steel, and 13.1 m heated length. Experiments were performed in the water pressure range 
of 7.0 to 15.3 MPa and the water mass flux range of 720 to 3200 kgfm2-s. The data exhib
ited two trends: heat flux independent and heat flux dependent. Empirical correlation 
equations were developed from over 400 CHF tests performed in the SGTF. The data and 
correlation equations were compared to the results of other CHF investigations. 

Introduction 
The phenomenon of critical heat flux (CHF) in boiling systems 

continues to receive substantial attention in the engineering literature. 
Heat transfer usually changes drastically and abruptly at CHF from 
excellent heat transfer to very poor heat transfer, producing conse
quences that are extremely important for a multitude of applications. 
Two recent review articles [1, 2] include bibliographies of over 100 
references each of recent publications in this important area. The 
amount of experimental data collected, empirical correlation equa
tions developed, and predictive mathematical models formulated has 
still not led to satisfactory general methods for predicting the oc
currence of CHF in any given system. As is usual in two-phase flow, 
the scope of the CHF phenomenon has been subdivided into classes 
of more specific and restrictive circumstances, each of which has been 
treated independently in the engineering literature. Considerably 
better success has generally been achieved in the analysis of the sep
arate subdivisions than can presently be obtained for the more general 
conditions. However, considerable disagreement and conflicting data 
still exist concerning CHF even within these subdivisions. Thus, de
velopmental work in the area of CHF continues at a fast pace as a 
consequence of the importance of the phenomenon. 

One class of CHF analysis that has received less experimental at
tention than many of the others is flow-boiling CHF inside of tubes 
where the heat is supplied by a flowing fluid on the outside of the 
tubes. An important application of this class is in the analysis, design, 
and development of steam generators for liquid metal fast breeder 
reactor (LMFBR) electric power plants. Experimental investigations 
have been performed in small, laboratory-type systems as well as in 
large systems prototypical of full-scale steam generators in an attempt 
to provide the CHF information necessary to support the design of 
LMFBR steam generators. Experiments of the prototypic type require 
liquid metal heating of boiling water in relatively large systems (10 
to 20 m long tubes are common) and, as a result, data obtained in such 
systems have been quite limited. Because of the problems and 
uncertainties associated with the application of experimental data 
from smaller, nonprototypic systems to full-scale steam generator 
designs, the liquid metal heated prototypical experiments are gen
erally preferred. These latter experiments are intended to provide 
measurements directly applicable to full-scale designs. However, 
among the limited experimental data of the prototypic type that have 
been reported in the engineering literature, discrepancies exist in the 
prediction of CHF. 

The prediction of CHF in liquid metal heated, flow-boiling water 
has generally been made by empirical correlation equations that were 
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"fit" to experimental data. However, various fundamental questions 
arise concerning this procedure and the way in which the data are 
represented. The more prominent of these are discussed in subsequent 
sections, but as a consequence of them, and of the sparsity of available 
prototypic data, the objective of this investigation was to obtain and 
correlate experimental data over a wide range of parameters typical 
for LMFBR steam generator application, employing a full-scale 
prototypical experimental test section. Experimental results and an 
empirical correlation equation are presented. 

Experimental Facility 
The Steam Generator Test Facility (SGTF) at Argonne National 

Laboratory (ANL) is a sodium and water facility designed to ac
commodate full-scale LMFBR steam generator tubes with vertical 
lengths in excess of 20 m. The maximum nominal operating param
eters are as follows: power = 1 MW, sodium volumetric flowrate = 
0.0044 m3/s at 650°C, water pressure = 16.5 MPa, water volumetric 
flowrate = 0.0082 m3/s. The water and sodium piping circuits are both 
closed loops delivering flow to and from the test sectionr The facility 
is described in some detail in [3] and [4]. 

The SGTF test section is shown schematically in Fig. 1. It consists 
of a straight, vertical, round water tube with inside diameter = 10.1 
mm, outside diameter = 15.9 mm, material 2V4 Cr - 1 Mo steel, and 
heated length = 13.1 m. Water was force-circulated upwards in the 
tube, and sodium flowed countercurrent in the surrounding concentric 
annulus; the inside shell diameter was 31.5 mm. Spacers, which were 
designed to have minimal fin effect and low flow disturbance, were 
placed at 0.6 m and 0.9 m axial increments along the test section to 
maintain concentricity between the tube and shell. The mixed mean 
temperatures of the sodium and water at the test section inlet and 
outlet were measured with stainless steel sheathed thermocouples 
(T.C.) placed in the flow as shown in Fig. 1. Two thermocouples were 
provided at each location, and mixers were placed upstream of the 
sodium stream thermocouples at the inlet and outlet to the test sec
tion. The principal instruments used for determining the critical heat 
flux were the 102 select wire, chromel-alumel thermocouples spot 
welded to the outside of the shell, as shown in Fig. 1. These shell 
thermocouples were spaced at 0.3 m axial increments in a straight line 
with three additional thermocouples placed at 90 deg increments 
around the shell at several axial locations. Additional thermocouples 
were placed on the shell at several axial locations to decrease the axial 
spacing to 76.2 mm. At these locations, a stainless steel sheathed 
thermocouple, 0.81 mm o.d., was brazed into the water tube wall from 
the sodium side. These internal, or tube, thermocouples are indicated 
in Fig. 1. Sodium flow was measured with an electromagnetic flow
meter and water flow with a turbine flowmeter. High accuracy pres
sure gauges and pressure transducers were used to measure water 
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Fig. 1 SGTF test section schematic 

pressure with an accuracy of ±0.02 MPa. 
The stream thermocouples, internal thermocouples, sodium and 

water flowmeters, and water pressure transducers were all calibrated 
externally to the test facility, and all calibration equipment was 
traceable to U. S. National Bureau of Standards specifications. The 
shell thermocouples were calibrated in place by a series of isothermal 
tests over the full range of SGTF operating temperatures. These tests 
also determined test section heat loss (which was minimal). 

Heat balance tests served as a final check on the accuracy of the 
stream thermocouples and the sodium and water flowmeters. These 
tests were conducted with subcooled liquid inside the entire test 
section tube. The results were generally within ±2 percent. Heat 
balance tests were conducted at regular intervals throughout the 
entire test series to insure the continued accuracy of the instruments. 
At the same time, other important data sensors were checked for ac
curacy. 

The outputs from all of the 150 SGTF sensors were recorded by a 
high-speed, computerized data acquisition system. The controllers 
of any experimental system, whether manual or automatic, induce 
low frequency oscillations in pressures, temperatures, and flows. The 

automatic feedback controllers in the SGTF were normally adjusted 
so that the period of these system induced oscillations was of the order 
of 1 min, and the amplitudes were minimized. However, small axial 
movement of the CHF position in the test section tube caused shell 
temperatures in the CHF region to vary significantly as the boiling 
alternated between nucleate and film types. Consequently, it was 
necessary to record all of the sensor signals in a time period signifi
cantly less than the system oscillation period. All of the sensor outputs 
on the SGTF were recorded by the data acquisition system in a time 
period of 0.03 s, representing one data scan. Multiple data scans were 
recorded during each test run at time intervals of 10 s to 1 min. The 
accuracy of the entire data acquisition system was checked at regular 
intervals by comparison with instruments with calibrations traceable 
to the U. S. National Bureau of Standards. 

Several continuous output instruments were used to monitor the 
chemical quality of the water in the SGTF. During testing, the fol
lowing parameter ranges were maintained: 

(1) Dissolved oxygen 10 ppb maximum 
(2) pH 9 to 10 
(3) Hydrazine residual 10 to 50 ppb 
(4) Cation conductivity at 25°C 3 micro-mho/cm maximum 

The oxide content of the sodium was kept low by cold trapping and 
dump tank storage. 

Experimental Procedure 
Five parameters were used to specify a test in the SGTF: water mass 

flux, water pressure, water inlet subcooling, sodium flowrate, and 
temperature of the sodium at the inlet to the test section. Tests were 
performed at all 16 combinations of the following water parameters 
(some intermediate values were also employed): 

pressure = 7.0,10.1, 13.0,15.3 MPa 

mass flux = 720,1440, 2400, 3200 kg/m2-s 

For each combination of water pressure and mass flux, the other three 
parameters were varied to obtain the largest possible range of critical 
heat flux. (Water always entered the test section with a minimum of 
20°C subcooling.) Additionally, each test was conducted so that CHF 
occurred in an area of the test section where the shell thermocouple 
spacing was 76.2 mm, and a tube thermocouple was located within the 
transition boiling zone. Generally, a test proceeded by establishing 
all parameters except the sodium inlet temperature, which was in
creased until CHF first occurred at the top of the test section, the 
water exit. The sodium inlet temperature was then increased further 
until CHF was positioned as described above, and the appropriate 
tube thermocouple was showing the relatively large amplitude fluc
tuations indicative of transition boiling. When all system parameters 
were steady, multiple data scans were recorded by the computer data 
acquisition system and stored for subsequent analysis. 

Typical shell and tube thermocouple measurements are shown in 
Fig. 2 by square and circular symbols, respectively. In this test, all of 
the tube thermocouples gave steady readings, with the exception of 
the tube thermocouple located 12.2 m downstream of the water inlet 
to the test section. The fluctuation of this thermocouple output in
dicated that it was within the transition boiling zone, and its ampli
tude is shown in Fig. 2. At this same location, the plot of shell tem-

•Nomenclature. 
Ai, hi, h = constants in correlation equations 

(5) and (6) 
Cp = specific heat, J/kg-K 
d = inside diameter of water tube (2r„), m 
/i(r) = initial sodium temperature distribu

tion at z = 0, °C 
G = mass flux, Mg/m2-s 
k = thermal conductivity of sodium, 

W/m-K 
ke = effective turbulent thermal conductivity 

of sodium, W/m-K 
L = heated tube length, 13.1 m 

P = pressure, MPa 
Pr = reduced pressure , r j r critical 

9'LOSS = measured test section heat loss, 
W/m 

q" = heat flux, MW/m2 

p = sodium density, kg/m3 

r = radial coordinate measured from the 
centerline of the water tube, m 

T = sodium temperature, °C 
V = sodium axial velocity, m/s 
Xc = critical water quality 
Y = measured shell temperature, °C 

2 = axial coordinate in direction of sodium 
flow, m 

Subscr ipts 

a = inside surface of water tube 
6 = outside surface of water tube 
c = inside surface of sodium shell (outer an-

nulus tube) 
EXIT = outlet from test section 
IN = inlet to test section 
OUT = outlet from test section 
s = outside surface of sodium shell 
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Fig. 2 Typical experimental measurements 

perature as a function of axial test section distance (as determined 
from the shell thermocouple measurements and shown in Fig. 2) ex
hibited a sharp change in slope, indicating the existence of CHF in 
agreement with the tube thermocouple indication. 

Data Analysis 
In order to determine the critical heat flux and critical quality for 

each test, it was necessary to determine the axial heat flux distribution 
from the measured shell temperatures. In contrast to experiments 
employing resistance heating of the tube wall, the heat flux in a 
temperature-controlled system must be calculated rather than 
measured. This situation generally leads to increased data scatter. 
Since considerable discrepancies and scatter exist among data ob
tained from resistance-heated experiments, a special attempt was 
made to minimize data scatter in the present experiments by adopting 
a more comprehensive data analysis than has been generally applied 
in previous temperature-controlled CHF experiments. The analysis 
included some effects previously neglected and assumed to be of 
second order. The data analyses of [5] and [6], for example, assumed 
fully developed sodium temperature profiles by using the heat flux 
calculated from the slope of the shell temperatures as the water heat 
flux. Although this assumption was shown to introduce a maximum 
error of approximately 8 percent in [6], it was removed in the present 
analysis where the sodium temperature profile was calculated as a 
function of axial and radial distance. 

The sodium temperature in the annulus is governed by the energy 
equation 

dT 
PCpV—=ke 

dz 

d2T 

dr2 ' 

ldT\ 

r dr} + -
dke dT 

dr dr 
(1) 

where the axial conduction term was neglected on the basis of an order 
of magnitude calculation. (Axial conduction is generally not negligible 
at CHF in heat-flux-controlled systems [7].) In the current applica
tion, the flow is turbulent, and the quantities T(r,z) and V(r) are the 
time-averaged temperature and velocity distributions, respectively. 
It is assumed that the sodium flow is fully developed hydrodynami-
cally, but developing thermally. (Although the velocity is not an ex
plicit function of the axial coordinate z, it does vary in this direction 
as the fluid properties change with temperature.) The velocity dis
tribution, V(r), and the effective thermal conductivity, ke(r), used 
in equation (1) were determined from the Quarmby model [8]. 

The energy equation is of the parabolic type, and the solution 
progresses from the sodium inlet to the test section atz = 0. The initial 
condition is 

T(r,Q)=h(r) (2) 

The boundary conditions for equation (1) were determined from two 
measurements: (1) the axial temperature of the sodium shell at r = 

0.4 

R 78 (139) 15:13:44 

AXIAL DISTANCE FROM WATER INLET, m 

Fig. 3 Axial heat flux distribution 

rs, and (2) the radial heat loss determined from isothermal tests dis
cussed previously. The heat loss was small as a consequence of the test 
section insulation, and the surface at r = rs was nearly adiabatic. As 
a result, two boundary conditions were imposed at the inside radius 
of the sodium shell, r = rc: 

T(rc,z) = Y(z) 

and 

2irrck 
dT 

dr 
-<?'LOSS(Z) 

(3) 

(4) 

where Y(z) and g'LOSs(z) are the axial temperature measurement at 
rs and the radial heat loss, respectively. 

Solution of equation (1) with initial and boundary conditions (2-4) 
is a problem of the inverse heat conduction type since both boundary 
conditions are imposed at r = rc. Some problems of the inverse type 
may be solved with standard implicit finite difference methods with 
varying degrees of accuracy. However, solutions of this type are not 
generally possible, and were found to be completely inadequate in 
the present case where small inaccuracies in Y(z) were reflected vio
lently at r = /•(,. Thus, a nonlinear estimation method first suggested 
by Beck [9] was employed to solve the current problem. 

Analysis of a data scan proceeded by first fitting cubic spline 
functions to the measured shell temperatures as a function of axial 
distance. The data were smoothed by the spline fits by minimizing 
the second derivatives in the least squares sense. This technique was 
employed successfully in [6,10], and [11] because it is conducive to 
determination of first derivatives used in the calculation of heat flux. 
The spline function was used for the function Y(z) in equation (3). 
Next, a convenient form of the sodium radial temperature distribution 
at the test section inlet, fi(r) was chosen, and the method of [9] was 
employed to solve equation (1) to yield the axial and radial temper
ature distributions in the sodium annulus from which the heat flux 
to the water and the water quality were calculated. It was found that 
the choice of / i(r) did not affect CHF results unless CHF was posi
tioned rather close to the top of the test section, in which case fi(r) 
had to be chosen such that its effect damped out in a distance shorter 
than normal. 

The axial heat flux distribution calculated from the test data of Fig. 
2 is shown in Fig. 3. The axial distribution is far from uniform, a point 
that is considered in the Discussion section. The CHF location was 
taken as the point of maximum heat flux. It marks the point of change 
from good heat transfer to poor heat transfer termed nucleate and film 
boiling, respectively, by analogy to pool boiling. The terms departure 
from nucleate boiling (DNB), dryout, and burnout are also used in 
the engineering literature to describe the same phenomenon, although 
the usage of these terms is often more restrictive than the general 
name, critical heat flux (CHF). 

The accuracy of the data analysis was checked in three ways. First, 
having calculated the heat flux and temperature at the outside of the 
water-steam tube, r = rb, the radial temperature distribution was 
calculated in the tube wall at axial locations where tube thermocouples 
were embedded in the wall at known depths. The calculated tem
peratures at these thermocouple junctions are compared with the 

76 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



measured temperatures in Pig. 2. The dashed lines are the calculated 
values and show good agreement with the measurements (circular 
symbols). The second method of checking the data analysis was to 
analyze SGTF data scans by a completely independent method. This 
analysis was performed by the General Electric Company (GE) using 
the method of [10] and [11]. The GE analysis accounted for differences 
between the shell temperature and sodium bulk temperature in the 
calculation of water heat flux. Two data scans from different tests in 
the SGTF were analyzed, and excellent agreement was obtained with 
results from the present analysis. Finally, good agreement was found 
among data from GE experiments and the present experiments 
employing the same diameter water tube, water pressure, and water 
mass flux [10] at low values of heat flux, as discussed in a subsequent 
section. 

The reproducibility of SGTF data was confirmed in two ways. First, 
results of analyses of different data scans obtained from a single test 
intercompared well. Second, tests performed on different days using 
the same parameters yielded consistent results. 
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Results 
Over 400 tests were performed in the SGTF similar to the test de

picted in Figs. 2 and 3, and each yielded a single CHF data point, i.e., 
the heat flux and quality at CHF for a given water flowrate and 
pressure. A typical set of CHF data are shown in Fig. 4 for a fixed 
water pressure and mass flux, using coordinates of local heat flux 
versus quality. Of primary importance before proceeding to a math
ematical representation of the data is the establishment of the correct 
trends, and this is a point of current disagreement among various 
investigators. Older correlation equations which are based on con
siderable data generally represent the data as a straight line with a 
negative slope on the heat flux versus quality plot. Examples of some 
of these correlations which are currently used in various applications 
as given in [12] are Bowring [13], Kon'Kov [14], Thompson and 
Macbeth [15], Biasi [16], Westinghouse-Bettis [17], Westinghouse-III 
[18], and Kirby [19]. More recently, Doroschuk [20] found that his 
extensive data were best represented by dividing the plot into two 
regions, one with trends similar to the older correlations, and the other 
as a vertical line, i.e., with no heat flux dependence. Evaluating all of 
the SGTF data clearly showed the two-region trend found by Do
roschuk. 

The two-region trend of the SGTF data is seen in the data shown 
in Fig. 4. It consists of a heat flux dependent region and a heat flux 
independent region, termed CHF of the first and second kinds, re
spectively, by authors from the USSR. These data are the first re
ported in the open literature (other than USSR data) that show these 
two distinct trends. Additional plots of SGTF data given in Fig. 5 
cover a range of water pressure and water mass flux values. The 
coordinates have been normalized to facilitate comparison, and the 
two-region trend is evident in all cases. (It is possible to represent the 
data of Figs. 4 and 5 by single lines showing a heat flux dependence 
over the entire range. However, such a procedure would introduce 
undesirable preferential error between the data and the correlating 
lines (equations) and is clearly not as appropriate a representation 
as the two trends used.) 

As a result of the form of the CHF data obtained in the experiments 
performed in the SGTF, it was evident that the data would be rep
resented best by a two-region relation of the type presented by Do
roschuk [20]. However, the SGTF data agreed with Doroschuk's 
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correlation equation of [20] in a qualitative but not in a quantitative 
manner, as shown in Fig. 4. Thus, a new pair of correlation equations 
was developed which represented all of the 400 SGTF data well. Those 
equations are given below. 

(5) 

nd 

xc = 

xc = 
;=i J [1.356J 

1 

lOOd 

+ pr3.oe £ AiG^I 
i=7 

<j"(100d)5 

12 15 18 
+ £ ^;G<'-io) + P r £ AiG('"-»» + Pr

2-3 E A;G<'-16> (6) 
i=10 i=13 i=16 

Equations (5) and (6) represent the heat flux independent and de
pendent trends of the data, respectively. The units of the input pa
rameters and ranges of applicability of the correlation follow: 

0.72 < G < 3.2 Mg/m2-s 
0.317 <Pr^ 0.693 
0.3 MW/m2 < H" 
0.008 < d < 0.020 m 
minimum Xc given in Fig. 6. 

The limits on heat flux, diameter, and minimum critical quality given 
in Fig. 6 are discussed subsequently, and coefficients Ai and S„ and 
S are given in Tables 1 and 2. The correlation is easily applied by 

calculating values of Xc from both equations (5) and (6) for given 
pressure, flow, tube diameter, and heat flux; the smaller value is the 
appropriate one to use. 

Predictions of correlation equations (5) and (6) are shown in Fig. 
4 at conditions corresponding to the data. The agreement is good, and 
the two trends of the data are clearly reproduced by the correlation. 
Comparison between correlation equations (5) and (6) and all of the 
data obtained in the SGTF is shown in Fig. 7. The root mean square 
error is 14.7 percent. 

The application range of correlation equations (5) and (6) is re
stricted to the limits of the data base, the 400 SGTF tests. However, 
as discussed in [1], it is insufficient to define the applicable parameter 
range by the maximum and minimum parameters employed in the 
test series. For example, the maximum heat flux obtained in the test 
series occurring at a given pressure and mass flux may be significantly 
higher than the maximum heat flux obtained at other combinations 
of pressure and mass flux. It is inappropriate to use the former heat 
flux as the maximum limit of the correlation over all pressures and 
mass fluxes. Thus, the limits of applicability of correlation equations 
(5) and (6) are given in Fig. 6. The correlation applies to heat fluxes 
above 0.3 MW/m2 and to qualities above minimum values as a func
tion of pressure and mass flux, as shown in Fig. 6. 

The mathematical form of correlation equations (5) and (6) is 
somewhat more complex than many existing CHF correlations. This 
situation presents no problem for current computer design codes and 
was necessary for two reasons. First, the two data trends discussed 
previously required individual representation. The second reason is 
related to non-monotonic trends observed in the data. The effect of 
mass flux on the critical quality, Xc, in the heat flux independent 
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region was found to change within the pressure range of the data, 7.00 
MPa to 15.3 MPa. Also, the effect of heat flux on the critical quality 
in the heat flux dependent region was found to change with pressure 
and mass flux. Both of these data trends are also found in the data of 
[20]. 

All of the SGTF data upon which correlation equations (5) and (6) 
are based were obtained from a single diameter test section tube, d 
= 10 mm. A diameter effect was included in the correlation, but it is 
not based on SGTF data. It was adapted from the diameter effect of 
the correlation of [20] and is in good agreement with the diameter 
effect of the correlation of [5]. The diameter effects of [5] and [20] are 
relatively weak in a limited diameter range around the SGTF tube 
diameter of 10 mm. The maximum effect is at high pressure and low 
mass flux. It is recommended that the correlation not be applied 
outside the tube diameter range of 8 mm < d < 20 mm. 

Discussion 
Several interesting questions arise related to the data and corre

lation equations presented in the preceeding sections. One of the more 
important of these deals with the two CHF data trends observed. One 
might ask why these two trends have only been observed in the SGTF 
and USSR data. The answer appears to be that most other experi
menters observed one or the other of the trends and not both, either 
because of test section limitations or because of a lack of data. In this 
regard, it is helpful to divide CHF experimentation into two catego
ries: short tubes and long tubes. Confining the discussion to straight, 
vertical tubes with the boiling fluid subcooled at the inlet, there is 
extensive data in the engineering literature obtained in short tubes. 
The correlation equations of [13-19] are based mostly on this type of 
data. As a consequence of the short test section lengths, the critical 
heat fluxes obtained were relatively high, and the trend was similar 
to the heat flux dependent portion of the SGTF data obtained at 
higher heat fluxes. The short tube lengths precluded the experiments 
from being carried to low heat fluxes (at the water mass fluxes of the 
SGTF data) where the second trend (heat flux independent) was 
observed in the SGTF data. 

Having noted some consistency in trends between the SGTF CHF 
data and short tube data, long tube data were considered. (It is im
portant to be cognizant of the fact that trends of data and not mag
nitudes are being compared. Quantitative data comparisons will be 
made subsequently.) Two recent CHF investigations performed in 
long, sodium-heated tubes were reported in [5] and [11]. Both of these 
experiments produced data at relatively low heat fluxes. The data of 
[11] exhibited the heat flux independent trend found in the SGTF 
data. The data of [5] were correlated with an equation that exhibited 
a weak heat flux dependence which is not a lot different from the heat 
flux independent trend of SGTF data. The number of experiments 
performed in both of these investigations was limited as compared 
with the SGTF data. Perhaps more data would have revealed the 
two-trend situation found in the SGTF data by improving trend in
terpretation and by increasing the parameter ranges. However, the 
trends observed are consistent with the heat flux independent trend 
found in the SGTF data at low heat fluxes. The CHF correlation 
equations of [5] and [11] are shown in Fig. 4 evaluated at the water 
mass flux and pressure of the SGTF data. 

A third set of long tube data was reported in [20], and the CHF 
correlation equation is plotted in Fig. 4. The two trends are seen to 
be similar to the SGTF data trends; however, there are large quanti
tative differences. 

In the preceding paragraphs, consistencies were shown between 
the two trends observed in the SGTF data and other CHF data, even 
though single trends were observed in them. The next important 
question to consider concerns the quantitative differences among 
SGTF data and these other data. This point introduces the subject 
of axial heat flux distribution along the length of the test section. As 
discussed in [1], it is well established that CHF will occur at different 
conditions in short tubes as a function of the axial heat flux distri
bution. The correlation equations of [13-19] are based mostly on 
uniform heat flux tests in short tubes. This fact, coupled with the 
relatively high heat fluxes of the data bases and the resulting single 
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Predictions of equations (5) and (6) compared with data of reference 

trends observed, produced the not so surprising result that none of 
these correlation equations predicted the SGTF data well. Similarly, 
the correlation equations of [5] and [11] did not predict the SGTF data 
well as a consequence of the single trends of their data bases. However, 
correlation equations (5) and (6) predict the data of [5] and [11] rea
sonably well, as seen in Figs. 8 and 9. The correlation is somewhat 
conservative with respect to the data of [11]. The SGTF data, equa
tions (5) and (6), and the data of [11] are in good agreement at lower 
values of critical heat flux, as discussed in [10]. The larger dis
crepancies shown in Fig. 9 occur systematically at higher heat 
fluxes. 

A final comparison was made between equations (5) and (6), rep
resenting SGTF data, and the data of [20]. The result, shown in Fig. 
10, is preferential in nature. Good agreement was obtained at the 
higher water mass fluxes. The large discrepancies between equations 
(5) and (6) and the data of [20] occur at low mass fluxes and high heat 
fluxes. The question arises as to whether these discrepancies are at
tributable to the fact that the long tube of [20] was uniformly heated 
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Fig. 10 Predictions of equations (5) and (6) compared with data of reference 
[20] 

in a heat flux controlled system. This effect is important in short tubes 
as mentioned previously, but there is evidence [21] that it is not very 
important in long tubes. It is interesting, however, that when non
uniform heating was employed by the authors of [20], the data moved 
in the direction of the SGTF data [22]. This effect was also observed 
previously in Freon boiling experiments [6]. 

A final interesting question related to the data and correlation 
equations presented is related to the local conditions treatment of the 
data. Hewitt [1] gave reasonable and convincing arguments that the 
local heat flux should not be an important correlating parameter in 
annular flow CHF. Indeed, the portion of the SGTF data that is 
clearly in the annular flow regime shows no local heat flux dependence. 
It is not clear whether the heat flux dependent data are also entirely 
in annular flow. The argument of USSR investigators as to the cause 
of the two data trends points to a different CHF mechanism in each 
trend region, which could be attributed to different flow regimes. 
However, the local heat flux versus quality plot still serves as a good 
correlating basis for all of the data. This situation was also true for 
the SGTF data. 

Conclusions 
Critical heat flux data were obtained in a long, sodium-heated test 

section tube over a large parameter range. An elaborate data reduction 
technique was applied. The data trends were similar to the trends 
observed by Doroschuk [20] and represent the first available so
dium-heated CHF data obtained outside the USSR that support those 
trends. 

The data from over 400 tests in the ANL Steam Generator Test 
Facility were empirically correlated by equations (5) and (6) over the 
parameter range 

7.0 < P < 15.3 MPa 
720 < G < 3200 kg/m2-s 

The correlation agreed well with the sodium-heated CHF data from 
the experiments of [5], and some agreement was found with the so

dium-heated data of [11] and the long tube data of [20]. The correla
tion equations (5) and (6) are believed to be the most accurate and 
most extensive developed to date for direct application to sodium-
heated steam generator tubes. 

Acknowledgments 
The authors appreciate the independent analysis of SGTF data 

performed at the General Electric Company under the direction of 
Dr. S. Wolf. 

This work was performed under the auspices of the United States 
Department of Energy. 

References 
1 Hewitt, G. F., "Critical Heat Flux in Flow Boiling," Proceedings of Sixth 

International Heat Transfer Conference, Toronto, Canada, Vol. 6, Aug. 1978, 
pp.143-171. 

2 Bergles, A. E., "Burnout in Boiling Heat Transfer Part III: High-Quality 
Forced-Convection Systems," Nuclear Safety, Vol. 20, No. 6, Nov.-Dec. 1979, 
pp. 671-689. 

3 Stevens, H. C, and France, D. M., "Development of a Thermal/Hy
draulic Test Facility for Full-Scale LMFBR Steam Generator Tubes," 
Transactions of the American Nuclear Society, Vol. 22, 1975, pp. 538-540. 

4 France, D. M., Carlson, R. D., Chiang, T., and Priemer, R., "Character
istics of Transition Boiling in Sodium-Heated Steam Generator Tubes," ASME 
JOURNAL OF HEAT TRANSFER, Vol. 101, No. 2, May 1979, pp. 270-275. 

5 Hwang, J. Y., Efferding, L. E., and Waszink, R. P., "Sodium-Heated 
Evaporator Critical Heat Flux Experiments at Subcritical Pressure Conditions 
for Commercial LMFBR Plant Application," ASME Paper No. 76-JPGC-
NE-10, Sept. 1976. 

6 France, D. M., "DNB in Liquid Metal Heated Forced Convection Boil
ing," International Journal of Heat Mass Transfer, Vol. 16, 1973, pp. 2343-
2354. 

7 Groeneveld, D. C, "The Thermal Behavior of a Heated Surface at and 
beyond Dryout," AECL-4309, Nov. 1972. 

8 Quarmby, A., "An Analysis of Turbulent Flow in Concentric Annuli," 
Applied Scientific Research, Vol. 19, July 1968, pp. 250-273. 

9 Beck, James V., "Nonlinear Estimation Applied to the Nonlinear Inverse 
Heat Conduction Problems," International Journal of Heat Mass Transfer, 
Vol. 13,1970, pp. 703-716. 

10 Wolf, S., France, D. M. and Holmes, D. H., "Recent Advances in Eval
uating Critical Heat Flux Conditions in LMFBR Steam Generators," ASME 
Paper No. 77-WA/NE-ll, Nov. 1977. 

11 Wolf, S., and Holmes, D. H., "Critical Heat Flux in a Sodium-Heated 
Steam Generator Tube," 17th National Heat Transfer Conference, AIChE 
preprint, Aug. 1977, pp. 275-282. 

12 Tong, L. S., Boiling Crisis Critical Heat Flux, U. S. Atomic Energy 
Commission Office of Information Services, 1972. 

13 Bowring, R. W., "A Simple but Accurate Round Tube, Uniform Heat 
Flux, Dryout Correlation over the Pressure Range 0.7-17 MN/m2 (100-2500 
PSIA)," AEEW-R-789, Mar. 1972. 

14 Kon'Kov, A. S., "Experimental Study of the Conditions under which 
Heat Exchange Deteriorates when a Steam-Water Mixture Flows in Heated 
Tubes," Teploenergetika, Vol. 13, No. 12,1966, pp. 53-57. 

15 Thompson, B., and Macbeth, R. V., "Boiling Water Heat Transfer, 
Burnout in Uniformly Heated Round Tubes: A Compilation of World Data with 
Accurate Correlations," AEEW-R356, July 1964. 

16 Biasi, L., et al., "Studies of Burnout: Part III, A New Correlation for 
Round Ducts and Uniform Flux and Its Comparison with World Data," Energia 
Nucleare, Vol. 14, No. 9,1967, pp. 530-536. 

17 Goldman, K. M., and Thomas, D. E., USAEC Report WARD-MRP-92, 
Westinghouse Atomic Power Division, 1961. 

18 Tong, L. S., Journal of Nuclear Energy, Vol. 21,1967, p. 241. 
19 Kirby, G. J., " A New Correlation of Non-Uniformly Heated Round Tube 

Burnout Data," AEEW-R500, July 1966. 
20 Doroschuk, V. E., Levitan, L. L., and Lantzman, F. P., "Investigation 

in Burnout in Uniformly Heated Tubes," ASME Paper No. 75-WA/HT-22, Dec. 
1975. 

21 Cumo, M., Farello, F. E., and Palazi, G., "Temperature Controlled and 
Heat Flux Controlled Systems," CNEN Report No. CNEN/RT/ING(76) 8, 
1975. 

22 Doroschuk, V. E., Levitan, L. L., Lantzman, E. P., Nigmatulin, R. I., and 
Borevsky, L. Ya., "Investigation into Burnout Mechanisms in Steam-Generating 
Tubes," Proceedings of Sixth International Heat Transfer Conference, To
ronto, Canada, Aug. 1978, Vol. 1, pp. 393-398. 

80 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



B. T. Beck 
Assistant Professor of Mechanical Engineering, 

Kansas State University, 
Manhattan, Kan. 

G. L. Wedekind 
Professor of Engineering, 

Oakland University, 
Rochester, Mich. 

Mem. ASME 

A Generalization of the System 
Mean Void Fraction iodel for 
Transient Two-Phase Etaporating 
Flows 
The system mean void fraction model has been successful in the prediction of a variety 
of transient evaporating and condensing flow phenomena; however, applications of the 
model have been restricted to physical situations involving complete vaporization or con
densation. The major contribution of this paper is the development of a generalization 
of the existing system mean void fraction model, applicable to the broader class of tran
sient two-phase flow problems involving incomplete vaporization. Present applications 
of the generalized system mean void fraction model to transient evaporating flows indi
cate good agreement with experimental void fraction and mass flux response data avail
able in the literature. These data represent a variety of different flow geometries, types 
of fluids, and a wide range of operating conditions. 

Introduction 
The system mean void fraction model [1] is simpler than any of the 

major types of transient two-phase flow models listed by Collier [2] 
and Wallis [3]; in fact, simplicity is its principal virtue. It is based on 
an integral formulation approach, which yields a system of ordinary 
rather than partial differential equations governing the response of 
the important physical boundary phenomena. 

The basic form of the model was originally introduced by Wedekind 
and Stoecker [4, 5] to predict the response of the mixture-vapor 
transition point (effective point of complete vaporization) to changes 
in the inlet mass flowrate. Applications of the model have also in
cluded the response of outlet flowrate [1] and system pressure drop 
[6]. Furthermore, existing applications have included not only tran
sient evaporating flows, but transient condensing flows as well [1, 

7]. 
Thus far, however, specific applications of the system mean void 

fraction model to transient evaporating flows have been restricted 
to the class of problems in which complete vaporization1 takes place. 
Although the concept of a system mean void fraction for incomplete 
vaporization had been recognized earlier [1], a viable method of 
applying it had not yet been devised. The principal objective of this 
paper is to introduce a generalization which capitalizes on this con
cept, thereby extending the capability of the model to the broader 
class of problems involving incomplete vaporization. 

In order to visualize the physical basis for the proposed general
ization, it is helpful to compare evaporating flow systems undergoing 
complete and incomplete vaporization. First, it is possible to interpret 
the motion of the effective point of complete vaporization, as the 
propagation of the particular value of void fraction equal to unity.2 

Furthermore, the transient response of the outlet vapor flowrate at 
a fixed observation point can be related to the propagation of this 
specific representative void [1]. Now consider the general schematic 
of an evaporating flow system undergoing incomplete vaporization 
as depicted in Fig. I.3 Let Z be a fixed observation point where it is 

1 In applications to transient condensing flows [1], the model was likewise 
restricted to the class of problems involving complete condensation. 

2 This interpretation is in keeping with the concept of void propagation as 
referenced in the literature [8-11]. 

3 The annular flow configuration depicted here is for schematic purposes only, 
and is not in any way intended to imply that annular flow conditions necessarily 
always exist; nor are such conditions a necessary prerequisite to the proposed 
generalized model. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
November 1,1979. 

Fig. 1 Simplified schematic of evaporating flow system undergoing incom
plete vaporization from saturated inlet conditions 

desired to predict the transient response of variables such as flow 
quality, void fraction, and mass flowrate. Let attention be focused on 
a specific representative propagating void, a(z, £)z=>j«) = «o, other 
than unity, which passes by the observation point during the transient. 
The goal of the present generalization is to predict this transient re
sponse at the fixed observation point by relating the relevant variables 
to the propagation of this specific representative void.4 A means for 
selecting an appropriate representative void will be discussed later. 

Development of Proposed Generalization 
System Mean Void Fraction. Consider that portion of the two-

phase region upstream of the effective position of the specific repre
sentative propagating void, So. Then, by analogy with the complete 
vaporization case [1], a generalized nonfluctuating system mean void 
fraction may be defined as 

a(t) 
1 

v(t) 
a 

2 = 0 
(z, t)dz 

where 

a(z, £)z=5(t) = «o 

(1) 

(2) 

implicitly defines rj(£), the nonfluctuating effective position within 
the two-phase region associated with the particular value of area mean 
void fraction, So-

4 The extension of this concept to transient two-phase condensing flows is 
presently under investigation. 
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Of major importance to the development of the proposed general
ization is the concept that the generalized system mean void fraction 
is invariant with time during a transient. A sufficient condition for 
this time in variance is that the area mean void fraction, a(z, t), can 
be expressed as 

a(z, t) = 5(£) 

where the dimensionless variable, £, is given by 

£ = 2/5j(t) 

(3) 

(4) 

Although for a uniform heat flux and steady state true similarity 
exists, it is recognized that during a transient, similarity is only an 
approximation [20, 21]. Therefore, if used for other than estimating 
the system mean void fraction, it may introduce significant errors. 
This will be discussed in a later section. 

Response of Representative Propagating Void. The present 
analysis will be based on the following simplifications: 

1 Random fluctuations due to the stochastic nature of the two-
phase flow process are assumed to exhibit negligible influence 
on the deterministic system transients. 

2 Viscous dissipation, axial heat conduction and kinetic and 
gravitational potential energy contributions are neglected. 

3 Properties of the liquid and vapor are assumed to be saturation 
properties, evaluated at the system mean pressure. 

4 Spatial and temporal variations in system pressure are assumed 
to exhibit negligible influence on the conservation of mass and 
energy principles. 

5 The generalized system mean void fraction is invariant with 
time. 

6 Uniform applied heat flux. 
As mentioned earlier, a key to the simplicity of the generalized 

system mean void fraction model is the assumption that even during 
a transient the system mean void fraction remains constant. Like its 
counterpart for the special case of complete vaporization, this as
sumption has the effect of uncoupling6 the conservation of mass and 
energy principles from the transient form of the momentum principle, 
representing an analytical simplification of considerable magnitude. 
Thus, for the class of transient evaporating flow phenomena for which 

5 A similar uncoupling has been observed and discussed by Inayatullah and 
Nicoll [15] regarding an extension of Zuber and Staub's drift-flux formulation 
[9]. In their partial differential equation formulation, the uncoupling results 
from replacing the substantive derivative of pressure by the partial time de
rivative of pressure at some point in the flow channel. The implications are that 
the phenomena involved appear to be largely thermally governed. 

the time invariance is valid, these transient phenomena are governed 
by thermal mechanisms which can be represented by the conservation 
of mass and energy principles. All that is needed from the momentum 
principle is sufficient information to determine the system mean void 
fraction.6 

Conservation of Mass Principle. Application of the conservation 
of mass principle to the liquid and vapor within the portion of the 
two-phase region upstream of the propagating void, oto as indicated 
in Fig. 1, and incorporating the above assumptions, yields, 

d f*i{t> 
— i {p(l - a) +p'a}Atdz = mt(z,t)z=0-mt(z,t)z=r,u) 
at Jz=a 

dfi(t) + jp(l - 5) + p'a\At 
z = i)«) dt 

(5) 

Conservation of Energy Principle. Application of the conservation 
of energy principle in a similar fashion to the above region yields 

— I {ph(l - a) + p'h'a\Atdz = I LPdz 
dt Jz=o Jz=o 

+ \[h(l - x) + h'x]mtU=0 

- \[h(l -x) + h'x]mtU=m + \ph{l a) + p'h'a\At —— 
z=tj(d dt 

(6) 

Combined Conservation Equations. Combining equations (5) and 
(6) so as to eliminate mt(z, t)z=^(t), the mass flowrate leaving the 
subregion relative to the flow channel, and introducing the definitions 
given in equations (1) and (2), yields the following equation governing 
the response of ?}(£), the effective position of the representative 
propagating void: 

\p - (p - p')(l - *0)|(ao - c7)(h' - h)A, 
dm 

dt 

+ 'fqPr}(t) = (h'-h)(x0 

where 

u •— f 
m Jz 

m Jqdz 

•Xi)mt(z,t) (7) 
2=0 

(8) 

represents the spatial-average of the local applied heat flux. In its 
present form, equation (7) provides for the presence of transverse 

6 Estimation of the system mean void fraction from existing steady-state void 
fraction relationships is discussed in the Appendix. 

.Nomenclature-. 
At = total cross-sectional area of flow chan

nel, m2 

d = diameter of tube or equivalent diameter 
of flow channel, m 

fq = peripherally-averaged applied heat flux, 
W/m2 

G = instantaneous local total mass flux, g/ 
m2-s 

h = enthalpy of saturated liquid, J/g 
hi = enthalpy of subcooled liquid at inlet, 

J/g 
L = length of evaporating flow system, m 
La = length of adiabatic section, m 
mt = local total mass flowrate of fluid (liquid 

and vapor), g/s 
p = local pressure of fluid, N/m2 

P = inside perimeter of flow channel, m 
Pr = total power input, W 
t = time, s 
t' = dummy time variable, s 
to = estimated average delay time (see ref

erence [20]) 
Ti = temperature of subcooled liquid at inlet, 

°C 
x = local instantaneous flow quality 
xi = flow quality at inlet 
xo = flow quality at effective position of 

representative propagating void 
2 = axial position in evaporating flow system 

measured from inlet, m 
Z = position of a fixed observation point 

within evaporating flow system, m 
a = instantaneous area mean void fraction 
a; = void fraction at inlet 
«o = representative propagating void 
T\ = instantaneous effective position of rep

resentative propagating void, m 
6 = angle of inclination of evaporating flow 

system measured from the horizontal 
A = dummy time variable, s 
£ = dimensionless similarity variable 
p = density of saturated liquid, g/m3 

T = time constant characterizing response of 
effective position of representative prop
agating void, s 

T; = characteristic time defined by equation 

(ID, s 
r m = time constant of exponential inlet mass 

flowrate change, s 

Subscripts and Superscripts 

Unless otherwise indicated above, sub
scripts i and / generally represent initial 
and final steady-state values, respectively. 
Physical quantities which possess a tilde 
( ) are generally considered to be non-
fluctuating (or time-averaged), where 
fluctuating is in reference to the inherent 
stochastic nature of the two-phase flow 
process. The tilde is omitted, for simplicity, 
in reference to fluid properties other than 
pressure. Barred ( ) quantities are gen
erally considered to be nonfluctuating and 
spatially-averaged, where the averaging is 
presumed to take place within the appro
priate region under consideration. Primed 
(') symbols of quantities refer to saturated 
vapor. 
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distributions of void and velocity and relative velocity between phases. 
Also, note that equation (7) reduces to the result previously obtained 
for the special case of complete vaporization [1] when a 0 ~* 1. 

General Solution; Abritrary Heat Flux and Inlet Mass Flowrate. 
The general solution to equation (7) for an arbitrary and simultaneous 
variation in applied heat flux and inlet mass flowrate, subject to the 
initial conditions 

5)(t)(=o =»j;, fq(t)t=o =fq,i, mt(z, t)(=o 

may be expressed as follows: 

17, (X)' 

: nit.i (9) 

dX 
1 + 

Jt'=o 

mdO.t') 

mt,i 
i K ^ e x p j - j ^ 

xexplr \ m 
where T; is a "characteristic time" defined by 

d\\ dt/_ 

Ti 

\p-(p- P'KI - £o)Kh' - h)(a0 - a)At 

(10) 

(11) 

Constant Heat Flux and Exponential Inlet Mass Flowrate. Now, 
let the inlet mass flowrate change be represented by the following 
exponential function of time: 

m ((0, t) = mtj + (mtii - mtj)e~ (12) 

Then, substituting equation (12) into (10), assuming a constant heat 
flux, yields after rearrangement 

y(t) - ijf -th (rjr) -th -th. (13) 
W ~ Vf [1 - (Tmlr)] 

where the initial and final effective positions of the representative 
void, r\i and r\j, are given by 

mt,i(h' - h)(x0 - Xi) _ fhuih' - h)(x0 - S;) 

_ „, = ; _ 
UP fqP 

and where T represents the exponential time constant characterizing 
the response of the effective position of constant void for the case of 
constant heat flux, and is given by 

m ; (14) 

\p - (p - p')(l - x0)}(h' - h)(a0 - a)At 

7*P 
(15) 

It is of interest to note that equation (13) reduces to the appropriate 
response for a step change in inlet mass flowrate as (T„ , /T) —• 0. 

A careful examination of the system time constant, T, will show that 
it is a monotonically increasing function of the specific representative 
void. Note that, during a transient, this suggests a departure from 
similarity. 

Response of Flow Quality, Void Fraction, and Flowrate. Thus 
far in this analysis, the use of similarity has been limited to evaluating 
the system mean void fraction. For complete vaporization [1], this was 
its only use. However, for incomplete vaporization, similarity also 
represents a means of relating the transient response of the flow 
quality, void fraction, and mass flowrate at a fixed observation point, 
Z, to the propagation of a specific representative void, ao-

In terms of flow quality, a similarity relationship about a fixed 
observation point, Z, can be obtained from the steady state conser
vation of mass and energy principles, and takes the form 

x(Z, t) = x; + (xn — Xj) 
v(t) 

(16) 

Use of the above relationship for a fixed observation point, Z, re
quires the selection of a specific representative void, So, and its cor
responding flow quality jco- Once this selection is made, the effective 
Position ri(t) of the representative void So can be determined from 
equations (10) or (13). 

Under circumstances where the system transients involved remain 
quite small, the variation in void fraction and flow quality at some 
fixed observation point, Z, will also be small. Thus, virtually any 
specific void observed to pass by this point may be used as the rep

resentative void; all will yield essentially the same transient re
sponse. 

For larger transients, to minimize potential errors due to a depar
ture from similarity, the representative void is perhaps best selected 
on the basis of some sort of average. For this purpose, the represen
tative void corresponding to the average of the initial and final 
steady-state flow quality seems most appropriate. This results in a 
void propagation symmetrical about the fixed observation point. 

The void fraction response at the fixed observation point, Z, may 
be evaluated in terms of the flow quality response by means of a 
suitable relationship7 of the form 

a(Z, t) = a(x(Z, t)) (17) 

Applying the conservation of mass and energy principles to the 
two-phase mixture, the instantaneous mass flowrate response at a 
fixed observation point, Z, may be expressed as follows [20]: 

mt(Z,t) 

l-\P-
JqPZ 

(h'-h) 1- H (1 - Xi) •mt(0,t) 

1 - -0: [1 - x(Z, t)] 

(18) 

Departures from Similarity. The existence of a generalized 
similarity relationship was introduced as a sufficient condition for 
the assumed time-invariance of the generalized system mean void 
fraction. In the initial conceptual development of the system mean 
void fraction model, Wedekind [21] was able to establish approximate 
upper and lower bounds for the possible departure from similarity. 
A more quantitative estimate of the departure from similarity, and 
the resulting influence on the system response, has been given by Beck 
[20]. The predominant effect is to introduce a time-delay. Such time 
delays are a characteristic of two-phase flow models based on conti
nuity-wave theory [8, 9]. Although the time-dependence of the system 
mean void fraction may be significant under certain circumstances, 
such as with oscillatory inlet flow variations [20] of sufficiently high 
frequency, it becomes insignificant for transients sufficiently slow so 
as to allow time for redistribution [1] to occur. 

Applications to Transient Evaporating Flows 
The specific types of transients to be considered include the re

sponse of the outlet void fraction and outlet mass flux to decreases 
in inlet mass flowrate. These particular system responses are of in
terest because of their importance to the operation of boiling water 
nuclear reactor systems. As such, they include the added complexity 
of inlet subcooling. However, these tests represent the best experi
mental data currently available in the literature that provide a means 
of directly evaluating the concepts embodied in the proposed gener
alized system mean void fraction model. 

In order for the generalized system mean void fraction model to 
predict such transients, the analysis presented earlier for the two-
phase region must be extended beyond the assumption of saturated 
inlet conditions to include the influence of the motion of the so-called 
boiling boundary. This has been accomplished utilizing a consistent 
integral formulation approach. The details of this extension, and its 
application to the transients to be considered here, are discussed in 
reference [20], 

Outlet Void Fraction Response. Outlet void fraction response 
measurements of Shiralkar, et al. [10], initiated by exponential de
creases in inlet mass flowrate, are shown in Figs. 2 and 3. These tests 
simulate conditions possible during a hypothetical reactor accident, 
involving the loss of a recirculation pump. These tests also represent 
a considerable range of inlet subcooling. In each case the system was 
subjected to approximately a 50 percent exponential decrease in inlet 
mass flowrate. 

Superimposed on the experimental data shown in Figs. 2 and 3 is 

7 A number of such relationships have been proposed [16-19] for steady-state 
conditions. 
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the analytical prediction of outlet void fraction response based on the 
proposed generalized model, indicated by the smooth solid line. An 
extension of the drift-flux model, evaluated by Shiralkar, etal . [10], 
is also shown for comparison purposes as a broken line in the above 
figures. The proposed model is seen to predict the observed void 
fraction response quite well. Furthermore, this model also compares 
favorably, during the transient and the final steady-state conditions, 
with the more complex analytical solutions obtained from the drift-
flux partial differential equation formulation. 

Outlet Mass Flux Response. A comparison of predicted outlet 
mass flux response with experimental measurements of Gaspari, et 
al. [22] is shown in Fig. 4. This transient was initiated by a complete 
and rapid shutdown of inlet flowrate, approximating a step decrease. 
The measured mass flux was obtained indirectly by estimating the 
instantaneous slope from the corresponding discretely measured mass 
holdup data. It is of interest to note that even in this extreme situation 
corresponding to a complete flow shutdown, the generalized system 
mean void fraction model does quite a reasonable job of predicting 
the transient, particularly if consideration is given to the possible 
scatter in the experimental data. 

In Fig. 5 the predictions of the proposed generalization are com
pared with additional experimental mass flux response measurements 
of Gaspari et al. [22], for a similar type of transient. These measure
ments represent a considerable increase in power level and initial mass 
flux over the previous experimental data. Once again, the predictions 
of the proposed generalized system mean void fraction model compare 
favorably with the experimental measurements. 

Summary and Conclusions 
The primary purpose of this paper has been to present a general

ization of the system mean void fraction model, applicable to the 
broader class of transient two-phase flow problems involving in
complete vaporization. This generalization has been developed by 
focusing attention on a specific representative propagating void within 
the two-phase region and utilizing an integral formulation approach, 
conceptually similar to that originally introduced for complete va
porization; in fact, the complete vaporization is now included as a 
special case. The result is a system of ordinary differential equations 
governing the transient response of important boundary phenomena 
such as flow quality, void fraction, and mass flowrate, expressed solely 
in terms of the important system parameters involved. 

A key to the simplicity of the model is the identification of a time-
invariant generalized system mean void fraction. This has the effect 
of completely uncoupling the conservation of mass and energy prin
ciples from the transient form of the momentum principle, repre
senting an analytical simplification of considerable magnitude. Al
though the concept of time invariance for the generalized system mean 
void fraction represents only an approximation during a transient, 
it would appear that at least for transients sufficiently slow, the ap
proximation is indeed quite good. 

The ability of the proposed generalized model to accurately predict 
a variety of system transients has been demonstrated by comparison 
with experimental void fraction and mass flux response data available 
in the literature, and by comparison with corresponding predictions 
based on the drift-flux model. The transients considered encompassed 
a variety of different flow geometries, types of fluids, and a wide range 
of operating conditions, even under such extreme conditions as a 
complete shutdown of the inlet mass flowrate. 

This proven capability suggests that, at least under certain condi
tions, the major physical mechanisms involved in transient two-phase 
flow phenomena are simpler than those portrayed by the more com
plex partial differential equation models. The degree of analytical 
simplification achieved and the clearer interpretation of the major 
physical mechanisms involved represent some of the primary ad
vantages of the generalized system mean void fraction model as a tool 
in the analysis of transient two-phase evaporating flows. 
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APPENDIX 
For s t eady- s t a t e evapora t ing flow wi th s a t u r a t e d inlet condi t ions 

t h e general ized s imi lar i ty r e l a t i onsh ip 8 m a y be expressed as fol

lows: 

x(z, t) = xi + (xo — x,)£ (19) 

where t h e s imi lar i ty var iable , £, is given from equa t ion (4) as 

£ = zlvit) (20) 

Introducing equat ion (19) into the definition of the generalized system 

m e a n void fraction given by equa t ion (1) yields 

J«i 1 pxo 

&(Z)d£ = - Hx)dx (21) 
6=0 (*o - Xi) Jx=xi 

T h e s t eady - s t a t e void fract ion re la t ionsh ips used in th i s p a p e r to 

eva lua te t h e sys tem m e a n void fraction were selected pr imar i ly on 

the basis of their ability to accurately represent available exper imental 

s teady-sta te void fraction measurement s for each part icular fluid and 

flow si tuat ion considered. For comparison with the outlet void fraction 

t r a n s i e n t m e a s u r e m e n t s of Sh i ra lkar , e t al. [10] p r e s e n t e d in Figs. 2 

a n d 3, Zuber a n d F ind lay ' s void fract ion re la t ionsh ip [16] was used 

t o faci l i tate d i rec t compar i son of t h e p red ic t ions of t h e p roposed 

genera l iza t ion wi th those of t h e drift-flux mode l , also eva lua ted by 

Shi ra lkar , e t al. [10]. A m o r e sophis t i ca ted version of t h e Zuber a n d 

F ind lay relat ion suggested by Hancox and Nicoll [24] was uti l ized for 

compar i sons wi th t h e ou t l e t mass flux t r ans i en t s p r e s e n t e d in Figs. 

4 a n d 5. T h i s re la t ionsh ip was used because of its re la t ive s impl ic i ty 

a n d known accuracy in r ep re sen t ing void fraction for s t e a m - w a t e r 

sys tems over t h e en t i re r ange of flow qual i ty . A more de ta i l ed de

scr ip t ion of these void fraction re la t ionsh ips a n d the i r use in evalu

a t ing t h e p a r a m e t e r s associa ted wi th t h e general ized sys t em m e a n 

void fract ion mode l is given in reference [20]. 

8 This relationship is strictly valid only for uniform heat flux; however, even 
if the heat flux is nonuniform, equation (19) will yield an estimate of the flow 
quality distribution, provided that rj is based on the spatially-averaged (or 
system mean) heat flux, fq. Staub and Zuber [23] have investigated the influence 
of nonuniform heat flux in both steady-state and transient conditions, and found 
the effect on the local void fraction (and hence flow quality) distribution to be 
small even for significant departures from uniformity. 
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Droplet Ewaporation in High 
Temperature Environments 
Axisymmetric-stagnation-point conuectiue heat and mass transfer solutions are present-
ed for water evaporating into dry air and into pure steam for free stream temperatures 
from 373K to 1450K and radiative to convective heat flux ratios from 0 to 2. Effects of (1) 
blowing (evaporation), (2) variable fluid properties, (3) interdiffusion (binary diffusion 
with nonequal heat capacities), and (4) radiation are all included. A simple correlation 
which fits these stagnation point solutions within 3 percent is presented. Whole droplet 
heat transfer is shown to behave much like stagnation-point heat transfer when the Reyn
olds number is on the order of 100. Blowing and other high temperature effects on whole 
droplet heat and mass transfer can be estimated with stagnation point solutions. The 
ratio of stagnation point solutions with and without high temperature effects should mul
tiply no-blowing constant-fluid-properties whole-droplet heat transfer correlations as 
a correction factor. Such a corrected whole-droplet correlation compares favorably with 
experimental data in the literature. 

Introduction 
Significant portions of the droplets in sprays to quench fires, nu

clear reactor emergency core cooling sprays, and high pressure com-
bustor sprays can have Reynolds numbers on the order of 100. Models 
for such sprays are typically based on the behavior of individual 
droplets, which are assumed independent of each other. The external 
flow and heat transfer from a gas to single liquid droplets often behave 
as quasi-steady laminar flow forced convection heat transfer to a solid 
sphere. Internal circulation, free stream turbulence, accelerations, 
and oscillations typically have only small effects on the external flow 
and heat transfer to droplets when the Reynolds number is on the 
order of 100 [1-10]. A water droplet surface is typically an isotherm, 
because liquid side Peclet numbers are usually so large that liquid near 
the surface circulates from the front of the droplet to the back much 
faster than heat can diffuse into the droplet. An isothermal droplet 
surface allows the internal heat transfer to be separated from the 
external heat transfer. General solutions of the internal heat transfer 
are presented by Johns and Beckman [11] and Watada, et al. [12]. The 
present work is concerned with external heat and mass transfer. 

Many workers have determined external droplet Nusselt numbers 
for the case of low temperature differences (constant fluid properties 
without blowing) as a function of Reynolds number and Prandtl 
number; much of these data are reviewed by Pruppacher and Klett 
[13], Clift, et al. [14], Rowe, et al. [15], and Fuchs [16]. In what are 
perhaps the most accurate sphere Nusselt number experiments, Beard 
and Pruppacher [17] and Pruppacher and Rasmussen [18] suspended 
water droplets without a stinger by an air flow at the terminal velocity 
in a vertical wind tunnel with turbulence levels below 0.3 percent. 
They found 

Nu f l = 1.56 + 0.616Re i/aprW (1) 

for 2.5 < Re < 3320 and Pr = 0.71. Numerical computations for sphere 
Nusselt number by Woo and Hamielec [19], Navier-Stokes equations 
solutions and fully elliptic energy equation solutions, for Pr = 0.71 
and Re = 5,10, 30, 57,100, 200, and 300 all agree with the Beard and 
Pruppacher experimental correlation (equation (1)) to better than 
2 percent. 

Equation (1) is based on a single Prandtl number, Pr = 0.71, so the 
Prandtl number exponent of 1/3 is somewhat arbitrary and is based 
on tradition. Whole sphere heat transfer data has essentially the same 
Prandtl number dependence that laminar boundary layer heat 
transfer does. High-Schmidt-number sphere mass transfer into water 
(Sc s 1250) has a Sc1/3 dependence [15], while the high Schmidt 
(Prandtl) number limit for laminar boundary layer heat transfer has 
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this same 1/3 power proportion. Rowe, et al. [15] show that for sphere 
heat transfer data into air (Pr = 0.7) to follow the same correlation 
as for sphere heat transfer data into water (Pr = 6.8) that Pr0-39 should 
be used instead of Pr1/3. Gases typically have Prandtl and Schmidt 
numbers of order one, and for this 0.3 < Pr < 3 range, laminar stag
nation point boundary layer heat transfer is proportional to Pr0-18, 
essentially the same as for whole sphere heat transfer. Equation (1) 
can be rewritten for use in the 0.3 < Pr < 3 range as 

NuD = 1.56 + 0.626 Re1/2Pr0-38 (2) 

Local heat and mass transfer studies [5,19] show that overall ex
ternal heat and mass transfer to spheres is dominated by a bound
ary-layer-like flow on the front half of the sphere when the Reynolds 
number is on the order of 100. The axisymmetric stagnation-point-
flow boundary-layer solution is an exact solution of the Navier-Stokes 
equations [20], and so it is valid without the usual thin-boundary-layer 
restriction. However, the boundary-layer energy equation for heat 
transfer at an axisymmetric stagnation point is different from the fully 
elliptic energy equation. The Woo and Hamielec [19] numerical so
lutions of Nusselt number at the forward stagnation-point of a sphere 
for Reynolds numbers from 5 to 300 are correlated with a standard 
deviation of 1.3 percent by 

Nu = 0.953 + 1.320 Pr°-38Re1/2 (3) 

while the stagnation-point Nusselt number from first order boundary 
layer theory is Nu = 1.320 Pr0-38 Re1/2. Sphere stagnation point heat 
transfer is within 7 percent of first order boundary layer axisym
metric-stagnation-point heat transfer when the Reynolds number is 
100 or higher, and this stagnation point heat flux is about twice the 
overall sphere heat flux. 

The effects of blowing and variable fluid properties on axisym
metric stagnation-point heat transfer are nearly the same as these 
effects on heat transfer through other laminar boundary layers. Vir
tually all proposed boundary-layer variable-fluid-property correc
tions—reference state methods, Couette flow models, and correction 
factors—are independent of the pressure gradient. The effect of 
blowing on heat transfer at an axisymmetric stagnation-point will be 
shown to be nearly the same as this effect on a flat plate with zero 
pressure gradient. Heat transfer correction factors based on stagna
tion-point solutions should be nearly the same as correction factors 
based on heat transfer into the boundary-layer on the front half of 
the droplet, and this boundary-layer dominates the whole droplet heat 
transfer. However, blowing also causes earlier separation on a sphere 
[21], which further reduces heat transfer. 

Boundary Layer Equations 
The boundary-layer equations for flow over an axisymmetric body 
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with heat transfer and binary diffusion for conservation of mass, 
momentum, mass species, and energy are, respectively, 

d d 
— (rpu) + -—(rpv) •• 
bx by 

bu bu 
PUT~ + P"T" bx by 

bue b I bu 

bx by \ by, 

bmi bm\ b I bmi 
• ••' - = — p » -

by \ by 
pu —— + f>v _ 

bx by 

(4) 

(5) 

(6) 

bT bT b I bT\ nl s bmi bT , N 
pcpu — + pcpv — = — « — + p£(cpi - cP2) —— — (7) 

bx by by \ by) by by 

where x is the coordinate along the surface, y is normal to the surface, 
r is the perpendicular distance from the symmetric axis to the surface. 
The boundary conditions in the free steam, y —<• <», are 

T = Te, m = mie, u = ue 

The boundary conditions at the surface, y = 0, are 

T = Tw, mi = m\w, u = 0 

bT \ i . Z) bmi 
v = \k 

ay 
<?r / phfg= -

1 — mi i>y 

(8abc) 

(9a6c) 

(9d) 

Equation (9d) is specifically for evaporation of species 1 from the 
surface when there is no flux of species 2 across the surface. The 
radiative heat flux, qr, in equation (9d) actually represents the local 
net heat flux at the surface by all sources other than evaporation and 
convection in the external boundary layer. 

Conservation of mass, equation (4), is satisfied by defining a stream 
function, ty, as 

pur ' 
dy 

pvr •• 
b-j 

bx ' 
(10) 

The boundary-layer equations (4-9) can be cast in similarity variables 
with the Mangier-Levy-Lees transformation 

d£ = pepeue(r/D)2dx (11a) 

dr, = [pue/(2^2](r/D)dy. (lib) 
The boundary-layer equations can be made dimensionless by de
fining 

/ = V/(2£)V2D (12a) 

8 = (T- TW)/(T„ - Tw) (126) 

4> = (mi - mu)/(mlw - m l e ) . (12c) 
For the special case of the stagnation-point of a sphere, r = x and 

ue = 3u«,x/D. The boundary-layer equations are self-similar for an 
axisymmetric stagnation-point in that the only independent variable 
is T], where 

7) = (6Re)!/2 C (plPe)dy/D, 
Jo 

and Re = peuaDlp.e. These stagnation-point equations are 

(13) 

PH 
\PeP-e 

f"\ + / T + . 0 . 5 

1 

Pr e 

pk 

Pe&e 

Sc c 

0'\ +fd' 

p22) 

Pe2®e 

Pi - (f')2 
P 

+ f<t>' = 0 

(14) 

(15) 

p2X> )K cPi 
Bce\pe

23), 

with boundary conditions 

f(0)=fl(0) = 0 0(0) = 1 

/ ' (« ) — 1 »(<=)-• 1 0(~) — 0 

2Dw\ 1 

(mlw - muWW = 0 (16) 

/(0) = 
miu 

/(0) = - ^ 

/(0) = 

W e •* w) | /3UJR| 

Pe2®, 

Pr, 

Sc. 
<t>'(0) 

"(0) • 
qrD 

(17a) 

(176) 

(18a) 

(186) 

fl'(0) (18c) 

hfg \pekejPve * ' hfgp.e(6Re)1/2 

Cpe (Te - Tw) lpwkw\ 1 / Qr 

hfg \ peke I Pre \ ?c 

where primes denote d/dr). In the present work species 1 is water 
vapor and species 2 is air. The free stream mass fraction of water 
vapor, m\e, is set to zero for dry air flows and one for water vapor 
flows. The fluid properties used for pure air, pure water vapor, and 
air-water vapor mixtures are given in the Appendix. Equations 
(18a6c) represent blowing (evaporation); equation (186) is equivalent 
to equation (18c). The blowing parameter for heat transfer, 

B = 
Cpe W e •* w) Cp _ *-pe (Te ~ Tw) I | q, 

hfg \ q< hfg ~ Qr/m" 

and the blowing parameter for mass transfer, 

Bm = mie — miu 

miw - 1 

(19a) 

(196) 

are based on equations (18c) and (18a), respectively. 
Heat and mass transfer are not necessarily analogous when the 

wet-bulb temperature approaches the boiling point, because binary 
diffusion affects heat transfer. The third term in equation (16) rep
resents this effect of binary diffusion on energy transport. This term 
is insignificant for low ambient temperatures, but is significant for 
high ambient temperatures; (miw — m\e) is only about 0.03 when the 
ambient air temperature is 373 K, but it reaches about 0.3 when Te 

= 1250 K. Even with equal heat capacities, heat and mass transfer are 
not necessarily analogous, because the fluid property ratios in the 
species and energy equations are different. The dependence of these 
fluid properties on mass fraction is more significant than their tem
perature dependence. 

The convective heat flux at the surface is given by 

Qc — ^it 
bT 

by 
= kw(pJPe)(6ne)1/20'(O)(Tw - Te)/D (20) 

^Nomenc la ture* 

a = weighting factor for blowing parameter 
B = blowing parameter 
cp = heat capacity at constant pressure 
D = droplet diameter 
D = mass diffusion coefficient 
/ = dimensionless stream function, / ' = 

u/ue 

hfg = latent heat of vaporization 
k = thermal conductivity 
m = mass fraction 
M = molecular weight 
Nu = Nusselt number, qcD/ke(Te - Tw) 
^vaP = vapor pressure 

Pr = Prandtl number, p.cp/k 
q = heat flux 
Re = Reynolds number, peu„Dlp.e 

Sc = Schmidt number, p./pD 
T = temperature 
u = velocity in the x direction 
u„ = droplet speed relative to the ambient 

gas 
x = distance along the surface 
y = distance normal to the surface 
a = temperature exponent of (pk)-1 

(SRe)1'2 J" (p/pe)dy/D 

6=(T- Tw)/(Te - Tw) 
p. = viscosity 
p = density 
0 = (mi - mu)/(mlw - mu) 

Subscripts 
c = convective 
D = droplet averaged 
e = of the free stream 
m = for mass transfer 
r = radiative 
w = at the droplet surface 
1 = species 1, water vapor 
2 = species 2, air 
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so that the Nusselt number is 

Nu = qcD/ke(Tw - Te) •• 

T a b l e 1 W e t bulb t e m p e r a t u r e for air flow [K] 

(pk)u 

(pk)e 
(6Re)1/26>'(0). (21) 

The mass flux of water vapor at the surface relative to the mass av
erage velocity is 

dm i 
J\w PwJ-'u. 

dy 

= ~Pw3)w (PJpe)(6Re)V*4>'(0)(mlw - mle)/D (22) 
so that the Nusselt number for mass transfer is 

Num = jiwD/Pe£>e(miw - mu) 

The absolute surface mass flux is 

m = • = — 

1 - mlw 

(p2£)w 

(p2X>)e 

(<?c + qr)/hft 

(6Re)1/20'(O) (23) 

(24) 

S t a g n a t i o n P o i n t S o l u t i o n s 
The axisymmetric stagnation-point laminar boundary-layer 

equations (14-17, 18a), and (18c) were solved for water droplets 
evaporating in pure air and in pure water vapor at ambient temper
atures from 373 to 1450 K and with radiative to convective heating 
ratios from 0 to 2. Fluid property correlations given in the Appendix 
were used. A finite difference method with three point central dif
ferences and quasilinearization was used to solve the equations si
multaneously [22]. Computed wet-bulb temperatures for evaporation 
into air are given in Table 1. The computed wet-bulb temperatures 
agree within 2 K with those measured by Downing [23] (only the 373, 
450, and 650 K ambient temperature cases could be compared). Yuen 
and Chen [24, 25] evaporated water from a porous sphere in air at 
ambient temperatures up to 1250 K. They measured the temperature 
of the water as it entered the sphere center, which they claim to be 
close to the surface temperature, which should be close to the wet-bulb 
temperature. These measured temperatures agree with the computed 
wet-bulb temperatures with a standard deviation of 4 K. The surface 
mass fraction of water, m\w, is very sensitive to wet-bulb temperature; 
a 15 K difference in wet-bulb temperature can change m\w by a factor 
of two. The wet-bulb temperatures and the rest of the solution depend 
on the total pressure and the ambient mass fraction; the total pressure 
has been taken as 1 atm and m\e = 0 for the air flow cases. Computed 
values of d'(0) and 4>'(0) for water stagnation-points evaporating into 

. pure air and d'(0) for water stagnation-points evaporating into pure 
water vapor are given in Tables 2 and 3. Nusselt numbers for heat and 
mass transfer can be obtained from 0'(O) and $'(0) by using equations 
(21) and (23). 

C o r r e l a t i o n of S t a g n a t i o n P o i n t So lu t ions 
A simple correlation for the effects of blowing and variable fluid 

properties on stagnation point heat and mass transfer would be con
venient for engineering use. The Stewart and Prober [26] heat transfer 
tables for blowing with constant fluid properties at an axisymmetric 
stagnation point are correlated within about one percent by 

Nu = 1.320 Pr°-38(1 + fi)-°™Re1/2 (25) 

for the range 0.3 < Pr < 3 and B < 3. For a flat plate boundary layer 
with zero pressure gradient, the Stewart and Prober tables indicate 
heat transfer varying as about (1 + B) - 0-7 4 , nearly the same as for 
stagnation points. The heat transfer solutions of Bade [27] are for no 
blowing, Pr = 2/3, pjp = TIT,,, and txlp.e = k/ke = (T/Te)

1-" at an 
axisymmetric stagnation point. Bade's tabulated solutions in the 
range 0.2 < Tw/Te < 1 and 0 < a < 0.35 are correlated within about 
one percent by 

Nu+ = 1.320 Pr°-38[1 + (0.327 a - 0.0844)(1 - TJTe)\ Re1/2, 

(26) 

where the fluid properties for Nu+ and Re are evaluated at ambient 
conditions. Assuming that the blowing and variable fluid property 

2c 
373 K 

Ambient Temperatures 
450 K 650 K 850 K 1050 K 1250 K 1450 K 

0.0 
0.1 
0.2 
0.4 
0.7 
1.0 
1.5 
2.0 

303.5 
304.6 
305.6 
307.5 
309.9 
311.9 
314.8 
317.2 

313.9 
315.3 
316.6 
319.0 
321.9 
324.5 
327.9 
330.7 

329.1 
330.7 
332.1 
334.7 
337.8 
340.4 
343.7 
346.3 

337.4 
339.0 
340.4 
342.8 
345.6 
348.0 
350.9 
353.2 

342.8 
344.3 
345.6 
347.8 
350.4 
352.5 
355.1 
357.0 

346.6 
348.0 
349.2 
351.3 
353.7 
355.5 
357.9 
359.6 

349.5 
350.8 
351.9 
353.8 
356.0 
357.7 
359.8 
361.4 

T a b l e 2 ( a ) 0'(O) for a ir f l ow 

2r Ambient Temperatures 
qc 373 K 450 K 650 K 850 K 1050 K 1250 K 1450 K 

0.0 
0.1 
0.2 
0.4 
0.7 
1.0 
1.5 
2.0 

0.4423 
0.4424 
0.4424 
0.4423 
0.4421 
0.4418 
0.4413 
0.4406 

0.4214 
0.4211 
0.4208 
0.4201 
0.4189 
0.4175 
0.4150 
0.4124 

0.3805 
0.3792 
0.3778 
0.3749 
0.3704 
0.3657 
0.3578 
0.3499 

0.3496 
0.3472 
0.3448 
0.3399 
0.3324 
0.3250 
0.3130 
0.3017 

0.3228 
0.3195 
0.3163 
0.3097 
0.3001 
0.2909 
0.2764 
0.2631 

0.2986 
0.2946 
0.2907 
0.2830 
0.2720 
0.2615 
0.2457 
0.2316 

0.2762 
0.2717 
0.2673 
0.2589 
0.2469 
0.2359 
0.2194 
0.2051 

Table 2(b) 0'(O) for water vapor flow 

2r 
450 K 

Ambient Temperatures 
650 K 850 K 1050K 1250 K 1450 K 

0.0 
0.1 
0.2 
0.4 
0.7 
1.0 
1.5 
2.0 

0.5221 
0.5199 
0.5177 
0.5134 
0.5071 
0.5010 
0.4913 
0.4819 

0.4937 
0.4871 
0.4807 
0.4685 
0.4514 
0.4357 
0.4122 
0.3914 

0.4719 
0.4620 
0.4526 
0.4351 
0.4115 
0.3907 
0.3607 
0.3355 

0.4517 
0.4394 
0.4279 
0.4068 
0.3792 
0.3554 
0.3224 
0.2955 

0.4322 
0.4182 
0.4052 
0.3817 
0.3516 
0.3263 
0.2920 
0.2648 

0.4131 
0.3979 
0.3839 
0.3589 
0.3274 
0.3015 
0.2669 
0.2400 

T a b l e 3 -<j>'(0) for a ir flow 

2t 
Qc 373 K 

Ambient Temperatures 
450 K 650 K 850 K 1050 K 1250 K 1450 K 

0.0 
0.1 
0.2 
0.4 
0.7 
1.0 
1.5 
2.0 

0.4236 
0.4243 
0.4249 
0.4261 
0.4277 
0.4291 
0.4311 
0.4327 

0.4061 
0.4071 
0.4079 
0.4095 
0.4115 
0.4131 
0.4155 
0.4173 

0.3767 
0.3776 
0.3784 
0.3797 
0.3811 
0.3819 
0.3823 
0.3819 

0.3549 
0.3554 
0.3557 
0.3560 
0.3557 
0.3547 
0.3522 
0.3489 

0.3356 
0.3355 
0.3352 
0.3343 
0.3322 
0.3295 
0.3243 
0.3185 

0.3175 
0.3168 
0.3160 
0.3139 
0.3102 
0.3060 
0.2986 
0.2911 

0.3002 
0.2989 
0.2976 
0.2945 
0.2894 
0.2841 
0.2751 
0.2664 

effects act independently, the Nusselt number for blowing with 
variable fluid properties would be 

Nu* = 1.320 Pr°-38(1 + B)-°-7[l + (0.327 a 

- 0.0844)(1 - T,„/Te)]Re1/2. (27) 

In fact, computations by Dewey and Gross [28] for blowing with 
variable fluid properties for B = 2.5, Tw/Te = 0.4, and a = 0.3 agree 
with equation (27) to within two percent. 

Equation (27) is based on solutions assuming constant heat ca
pacities and fluid properties being functions of temperature only, 
which is typical of single species systems, such as water evaporating 
into pure water vapor. However, the further assumption oip,lp.e = k/ke 

= (T/Te)
l~a was made, while for water vapor /j,/p,e is much different 

from k/ke. The constant, a, should be obtained from the density -
thermal conductivity product as 

ln((pk)el(pk)w) 
(28) 

ln(TJTe) 

so that the energy equation will closely match reality, while the mo
mentum equation may deviate somewhat from the truth. Equation 
(27) correlates the present results for water stagnation points evap
orating into pure water vapor to within about 3 percent, as can be seen 
in the Fig. 1(a) plots of the ratio of actual Nusselt number from 
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Fig. 1 Ratio o( Nusselt number to Nusselt number correlation for stagna
tion-point flows 

equation (21) to estimated Nusselt number from equation (27). Note 
that the end points of these Nu/Nu* curves at each ambient tem
perature correspond to qrlqc — 0 for the lowest value of B and qr/<?c 
= 2 for the highest value of B. The nearly horizontal Nu/Nu* curves 
in Pig. 1(6) indicate that (1 + B) - 0-7 correctly represents the effect 
of blowing. The variable fluid properties correction, 1 + (0.327 a — 
0.0844) (1 - TJTe), is about 0.85 for the 1050,1250, and 1450 K water 
vapor heat transfer cases. For the Te = 1450 K and B = 2.5 case, the 
combined effect of blowing and variable fluid properties is to reduce 
the Nusselt number for evaporation into water vapor by a factor of 
3, and equation (27) predicts this reduced Nusselt number within 2 
percent. 

Evaporation of water into air is more complicated than the single 
species (evaporation into water vapor) case, because the heat capacity, 
density and other fluid properties depend on mass fraction. Higher 
blowing rates correspond to higher mass fractions of water vapor at 
the surface, so that blowing and variable fluid properties are coupled. 
Gross, et al. [29] and Mills and Wortman [30] correlated such foreign 
gas injection problems by weighting the blowing parameter with ratios 
of the molecular weights of the two species raised to a constant power. 
The present solutions for water evaporating into air can be well cor
related using the Mills and Wortman approach. The no-blowing (zero 
normal velocity at the surface and zero mass fraction of water every
where) Nusselt number, Nu+ , is given by equation (26). The tem
perature dependence of air properties is mostly accounted for by 
evaluating the fluid properties in Nu, Pr, and Re at ambient condi
tions (ambient conditions are required for equation (26)), since a s 
0.26 for air. The Nusselt number with blowing is 

Nu* = Nu+ (1 + aB)-al (29) 

where a is determined by fitting the numerical solutions. For mass 
transfer, Nu, Nu*, Pr, a, a, and B, are replaced in equation by Num , 
Num*, Sc, <xm, am, and Bm> respectively, where 

fa((p2fl)e/(p
2£U , „ n , 

ln{TJTe) 
Equations (29) fit the present numerical solutions for water evapo
rating into air to within 3 percent with a = 1.60 and am = 1.63 (see 
Pigs. 1(6) and 1(c)). Equations (29) fit the Mills and Wortman [30] 
axisymmetric-stagnation-point solutions for water injected into air 
to within 2 percent with a = 1.08 and am = 1.50. The differences be
tween the present solutions and the Mills and Wortman solutions (up 
to 4 percent for mass transfer and up to 21 percent for heat transfer) 
are very likely due to different fluid property correlations. Mills and 
Wortman used the rigid sphere kinetic theory model, while curve fits 
of experimental fluid property data were used for the present solutions 
(see Appendix). 

Estimated Whole Droplet Heat and Mass Transfer 
Reliable and complete theoretical solutions for whole sphere heat 

and mass transfer with blowing and variable fluid properties are not 
available. For low Reynolds number flow (Stokes flow) Montlucon 
[31] shows that the droplet heat transfer correction factor for blowing 
is (1/B)ln(l + B). The Navier-Stokes equations have been solved for 
flow over a sphere with blowing for Reynolds numbers 40 and 100 with 
Uiv/uco = 0.1 [21], but the energy equation was not solved for these 
flows. Hoffman and Ross [32] used a Galerkin method solution of the 
Navier-Stokes equations for flow over a droplet with uniform blowing 
with an integral boundary-layer formulation of the energy equation 
to estimate the blowing correction factor for heat transfer. They found 
that (1 + B) - 0 - 6 accurately correlated this correction factor for 0 < 
B < 3.5 and 20 < Re < 400. However, in actual droplet evaporation 
the blowing would be nonuniform and higher where the heat transfer 
is higher, near the forward stagnation point, so that a blowing cor
rection factor stronger than (1 + B) - 0-6 would be expected in this 
actual case. Moreover, the Hoffman and Ross theoretical method 
predicts local Nusselt numbers in the wake region that decrease with 
angle and Reynolds number, which should increase with these pa
rameters, and it predicts average Nusselt numbers proportional to 
Re1/3 in the high Reynolds number limit, which should be proportional 
to Re1 '2. 

Only Sayegh and Gauvin [33] attempted solving the difficult 
Navier-Stokes and fully elliptic energy equations with variable fluid 
properties for flow over a sphere. They used pe/p = T/Te, fi/p.e = k/he 

= (T/Te)0-8, and Pr = 0.672, for which Bade [27] has computed stag
nation-point solutions (the Tw/Te = 0.8 case in Bade's table has a 
typographical error, the 0.640 should be 0.650). Sayegh and Gauvin 
correctly reproduced constant fluid properties solutions previously 
computed by Woo and Hamielec [19], but for Re = 50 they predict 
the percent decrease in stagnation-point Nusselt numbers due to 
variable fluid properties to be four times that of Bade's solutions. 
Sayegh and Gauvin found negative drag coefficients for Tw/Te = 0.25, 
so their treatment of the variable fluid properties terms is suspect. 

In the absence of more exact solutions, the effects of blowing and 
variable fluid properties on whole droplet heat and mass transfer can 
be estimated by correcting no-blowing constant-fluid-properties 
whole-droplet Nusselt numbers with ratios of stagnation-point 
Nusselt numbers, as 

Nu* 
NUD = (1.56 + 0.626 Pr°-38Re1/2) , (31) 

Nu0 

where Nu* is from equation (29) and Nu0 = 1.320 Pr°-38Re1/2 from 
equation (29) with B = 0 and Tw = Te. Equation (31) can be further 
corrected with Nu/Nu* from Fig. 1, but this further correction is small. 
All fluid properties in NUD, NU, Nuo, Pr, and Re are evaluated at 
ambient conditions. Equation (31) does not account for a shift in the 
separation point due to blowing. Hamielec, Hoffman, and Ross [21] 
show that at a Reynolds number of 100 a uniform blowing value of 
vw/u„ =0.1 results in shifting the separation point 9 deg forward from 
where separation occurs for no blowmg. This uniform vwlu„ = 0.1 
blowing corresponds to a blowing parameter, B, of 0.465 at the stag
nation point and higher values of the blowing parameter at other 
points on the sphere. For actual droplet evaporation the blowing 
parameter is uniform, and the normal velocity at the surface, uw, is 
nonuniform. 

The blowing parameter, equation (19a), depends on the heat flux 
ratio qr/qc, which may be suspected of being a function of position 
on the sphere. The radiative heat flux, qr, actually represents the local 
net heat flux at the surface by all sources other than evaporation and 
convection in the external flow. Some droplet evaporation experi
ments are run with the droplets hung on small thermocouple wires. 
The heat conducted into the droplet through these wires divided by 
the droplet surface area acts like a radiative heat flux and should be 
added on as part of "qr" Internal circulation redistributes heat de
posited in the droplet by radiation and makes the droplet more nearly 
isothermal. The "qr" values include this heat redistribution before 
the heat reaches the surface. Wet-bulb (surface) temperatures are a 
function of qrlqc for evaporation of a droplet into another species (see 
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Table 1), so that qr/qc must be constant if the surface temperature 
is constant. Thus, for a well mixed or isothermal droplet, the radiative 
heat input would be spread to all points on the surface such that the 
local qr/qc would be uniform, and then qr/qc = (<7r/<7c) = Qr/qc, and 
the blowing parameter would be uniform. 

Water droplets 1 mm in diameter falling at terminal velocity would 
have surface velocities on the order of 0.1 m/s [2], and this internal 
circulation would essentially eliminate temperature gradients on the 
droplet surface. However, for an insulating droplet, such as for ex
periments using wetted porous ceramic spheres, radiative heating 
might not be redistributed; qr would be the local radiative heat flux. 
This radiative heat flux is often uniform, which results in qr/qc being 
larger on the back of the sphere than on the front of the sphere for an 
insulating droplet. Overall heat transfer to an insulating droplet can 
be higher than for the corresponding well mixed case, because the 
higher blowing parameter on the back of the insulated droplet does 
little to reduce overall heat transfer, while the blowing parameter on 
the front half is lower. For an insulating droplet with a uniform 
radiative heat flux, qr/qc in the blowing parameter should be replaced 
with qr/Sqc, where S is a value between one and the ratio of stagna
tion-point to whole-sphere convective heating. The well mixed droplet 
case is thought to be a good engineering approximation in most in
stances. 

Experimental Comparisons 
The few existing high temperature droplet evaporation studies 

include droplet Nusselt numbers correlated by (1) starting with a 
Nusselt number relation believed to be correct for low temperature 
differences, (2) evaluating fluid properties in that correlation at a 
reference temperature and a reference composition, and (3) multi
plying by a blowing correction factor which is a function of the blowing 
parameter only. These evaporation studies have been conducted in 
high temperature wind tunnels with either air flow or steam flow. A 
variety of blowing corrections and reference temperatures have been 
used. 

Yuen and Chen [25] use a (1 + B ) - 1 blowing correction factor for 
evaporation of either water or methanol into air. The present (1 + 
1.60B)-°-7 blowing correction for water evaporating into air agrees 
with the Yuen and Chen (1 + B ) _ 1 correlation to 1 percent for the 0 
< B < 0.49 range of their data. The present use of a weighting factor 
on the blowing parameter in the blowing correction factor, (1 + 
aB)~01, is based on the work of Mills and Wortman [30] and Gross, 
et al. [29], who show that the weighting factor, "a ," is the ratio of the 
free stream molecular weight to the molecular weight of the injectant 
with this quotient raised to a constant power. For methanol evapo
rating into air, " a " is nearly unity, because the molecular weight of 
methanol is nearly the same as that of air, so that the present sug
gested blowing correction factor for methanol evaporating into air is 
(1 + B) - 0-7 . The Yuen and Chen methanol data for air temperatures 
around 870 K falls about 6 percent below their correlation, while their 
methanol data for air temperatures around 470 K falls about 3 percent 
above their correlation, with the 670 K air temperature data falling 
half way between the 470 K data and the 870 K data. Using the 
present (1 + B) - 0 - 7 instead of the Yuen and Chen (1 + B ) - 1 would 
bring their methanol data nearly to a single line by accounting for 8.4 
of the 9 percent discrepancy. 

Downing [23, 34] evaporated droplets of acetone, benzene, hexane, 
and water into a heated air flow. Downing's blowing correction factor 
is [(1/B)ln(l + B)][l - 0.40(1 - (1/B)ln(l + B))], and he used both 
a reference temperature and a further correction factor based on the 
surface to ambient temperature ratio. The present estimated droplet 
Nusselt number, equation (31) further corrected with Nu/Nu* from 
Fig. 1, Downing's correlation, and Downing's water evaporation data 
all agree for his low air temperature cases. However, for water evap
orating into air at his highest air temperatures, 613 K, the present 
correlation and Downing's data agree, while his own correlation is 
about 6 percent below his data, apparently due to an effort to use the 
same correlation for all of his liquids. Thus, the presently proposed 
droplet Nusselt number formula, equation (31), correlates Downing's 
water evaporation data better than his own correlation does. 

Ross and Hoffman [35] evaporated water droplets into a water 
vapor flow with the walls independently heated such that qr/qc ranged 
from 0 to 4.0 and B ranged from 0.04 to 0.30. They used a (1 + B)~°•<* 
blowing correction in their Nusselt number correlation. The difference 
between (1 + B)~0-6 and (1 + B)~0-7 is at most 2.7 percent for the Ross 
and Hoffman data. The Ross and Hoffman Nusselt number correla
tion falls from 6 to 8 percent below the presently proposed droplet 
Nusselt number formula, equation (31), for the range of their data. 

Narasimhan and Gauvin [36] evaporated water from porous ceramic 
spheres into water vapor with blowing parameters as high as 2.5 for 
their relevant data (aided flow with Gr/Re2 < 0.2). They studied 
combined forced and free convection, and found that Nusselt numbers 
for opposed flow were 47 percent higher than those for aided flow even 
when Gr/Re2 < 0.01. Clift, et al. [14] review combined free and forced 
convection on spheres, and explain, that although Nusselt numbers 
for opposed, aided, and cross flow are the same when Gr/Re2 < 0-1 and 
Gr is on the order of 100, unsteady wake interaction effects at higher 
Grashof numbers result in higher Nusselt numbers for opposed flow. 
Narasimhan and Gauvin had Grashof numbers as high as 5500. 
Narasimhan and Gauvin use (1 + B) - 0 - 6 blowing correction in their 
Nusselt number correlation for aided flow, as Ross and Hoffman did. 
Narasimhan and Gauvin had an insulated droplet, and their (1 + 
B) - 0 - 6 correction can be interpreted as a (1 + B) - 0-7 correction with 
Qr/qc = Qr/Sqc-

Conclusions 
The laminar boundary-layer equations for evaporation of water at 

an axisymmetric-stagnation-point into pure steam flows and into dry 
air flows have been solved for free stream temperatures from 373 to 
1450 K and radiative to convective heat flux ratios from 0 to 2. These 
stagnation point solutions are all correlated within about 3 percent 
by equations (26) and (29). The blowing correction factor is (1 + 
aB)~01, where a = 1 for water evaporating into steam, a = 1.60 for 
heat transfer with water evaporating into air, and am = 1.63 for mass 
transfer with water evaporating into air. 

Whole droplet heat transfer behaves much like stagnation point 
heat transfer; the common Pr0-38Re1''2 dependence has been shown 
previously. Corrections to whole droplet heat transfer for the high 
temperature effects of blowing with variable fluid properties can be 
estimated with stagnation-point solutions. The ratio of stagnation-
point solutions with and without blowing and variable fluid properties 
should multiply no-blowing constant-fluid-properties whole-droplet 
heat transfer correlations as a correction factor, such as equation (31). 
Equation (31) correlates the high-temperature-environment droplet 
evaporation data available in the literature fairly well, and in some 
cases, equation (31) correlates this data better than the original cor
relations do. Blowing causes separation to occur earlier, and this effect 
is expected to cause a small further decrease in droplet Nusselt 
number. 
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APPENDIX 
P r o p e r t i e s of A i r - W a t e r Vapor M i x t u r e s 

The following correlations for the properties of air, water vapor, 
and air-water vapor mixtures were used in solving stagnation-point 
convection, equations (14-18). Equations and tables from references 
[37-42] were used. All temperatures are in degrees Kelvin. These 
correlations were used for temperatures ranging from 303 to 1450 
K. 

For pure air 

M = 29 
k [W/mK] = 3.227 X 10"3 + 8.3894 X 10-6T - 1.958 X 10-8T2 

fi [kg/ms] = 6.109 X 10-« + 4.604 X 10-ST - 1.051 X 1 0 - U T 2 

Pr = 0.647 + 5.5 X 10~5T for T > 600 K 
Pr = 0.815-4.958 X 1 0 - T + 4.514 X 10-7T2 for T < 600 K 

For pure water vapor 

M = 18 
k [W/mK] = 1.024 X 10~2 - 8.21 X 10-6T + 1.41 X 10"7T2 

-4.51 X 10" U T 3 

M [kg/ms] = 4.07 X 10-8T - 3.077 X 10~6 

cp [Ws/kg K] = 8137 - 37.340T + 0.07482T2 - 4.956 X 10-6T3 

T < 535 K 
cp [Ws/kg K] = 1854 - 0.1194T + 8.304 X 10-4T2 - 2.777 X 10"7T3 

T > 535 K 
hfg [Ws/kg] = 2.257 X 106 + 2.595 X 103 (373.15-T) 
P v a p [atm] = (T/373.15)13-8 + 2.5 X 10-" (T-373.15) 

For air-water vapor mixtures 

3 i 2 [m2/s] = 1.732 X 10- 9 T 1 6 8 6 T < 400 K 
£12 [m2/s] = 5.385 X 10- 1 0 T 1 8 8 T > 400 K 
cp = miCpi + (1 - mi)cP2 
xx = 1/[1 + (1/mi - l)(Mi/M2)] x2 = 1 - xi 
p [kg/m3] = (siAfi + *2M2)/(0.082057:) 
4HJ = [1 + (M, /M,) 1 / 4 W W ) 1 / 2 ] 2 (8 + 8Mi/Mj)-Vz 
p. = XlflJ(Xi + X20l2) + X2ft2/(x2 + Xl<f>2l) 
k = Xik\l(xi + X2012) + *2&2/(*2 + *l<fel) 
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On the Transient Contectiwe 
Transport from a Body of Arbitrary 
Shape1 

The net rate of transient convectiue heat transfer from a body at uniform temperature 
in steady flow is shown to be invariant to pointwise reversal of the flow. Such reversal is 
physically possible in both creeping and potential flows. Creeping flow and the unsepar-
ated potential flow of a low Prandtl number fluid yield physically important transfer 
problems. Additionally, the theorem is applicable to problems for which flow reversal has 
no physical significance; numerical reversal of any incompressible streaming flow will 
leave the net transfer rate unchanged. The proof is not based on symmetry and places no 
restriction on the shape of the body. It remains valid over the entire range of Reynolds and 
Peclet numbers even though local transfer rates may differ significantly in the two direc
tions of flow. The theorem applies to the analogous mass transport and is generalized to 
include a homogeneous first order reaction decreasing the concentration. 

Introduction 
Under quite general conditions, Brenner [1] demonstrated that the 

overall rate of steady heat transport from an isothermal body is in
variant to pointwise flow reversal. Thus, potential or creeping flow 
past an arbitrarily shaped body will, when reversed, produce the same 
net transport rate. This result remains true even with high Peclet 
numbers where local transport rates differ tremendously under flow 
reversal. Symmetry is not invoked in the argument; the result holds 
for asymmetric geometries or flows. 

Examples illustrating Brenner's theorem are provided by analyses 
[2, 3] of transport in an electrically induced flow about a drop. Al
though the drop is spherical, flow reversal is nontrivial. In one di
rection, fluid on a contacting stream surface approaches the drop 
radially on the equatorial plane, then sweeps across a hemispherical 
surface to exit along the polar axis. In a reversed flow, approach is 
along the axis and departure on the plane. For both high [2] and low 
[3] Peclet numbers, flow reversal leaves the steady transfer rate un
altered. 

The high Peclet number analysis included the transient response 
to a step change in the temperature difference between the drop and 
the surrounding fluid. While equality of steady transfer rates in the 
two flow directions was anticipated, the transient rates, surprisingly, 
are also equal at all times. The integral expressions for these rates 
yield identical results when evaluated numerically. 

This remarkable fact leads to the conjecture that invariance to flow 
reversal may be more generally true for transient transport. In this 
paper, that conjecture will be affirmed. 

Chen and Pfeffer [4] numerically investigated steady mass trans
port from a translating sphere in the presence of an inert second 
sphere. Calculations, with and without a homogeneous first order 

1 Work performed under the auspices of the U. S. Department of Energy by 
the Lawrence Livermore National Laboratory under contract number W-
7405-KNG-48. 

This report was prepared as an account of work sponsored by the United 
States Government. Neither the United States nor the United States Depart
ment of Energy, nor any of their employees, nor any of their contractors, sub
contractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness or 
usefulness of any information, apparatus, product or process disclosed, or 
represents that its use would not infringe privately-owned rights. 

Reference to a company or product name does not imply approval or rec
ommendation of the product by the University of California or the U. S. De
partment of Energy to the exclusion of others that may be suitable. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division May 
1,1980. 

reaction, apparently showed that the overall steady transfer rate is 
invariant to reversal of the creeping flow. Brenner [5] generalized his 
theorem to include the effect of such chemical reaction and also noted 
the simple extension to assemblages of bodies moving in concert. The 
transient mass transport with this chemical reaction is treated in our 
Appendix. The theorem remains valid with this generalization. 

Analysis 
An isolated body of arbitrary shape is immersed in a fluid flowing 

about it. The fluid is incompressible with constant material properties. 
Viscous dissipation and radiative transport are presumed negligible. 
The temperature distribution in this flow field is governed by the 
energy equation 

* V 2 T - v - V T = mt) (1) 

The temperature distribution is T in this "forward" flow, a is the 
thermal diffusivity, t is the time and v is the velocity distribution in 
the forward flow. A different distribution T results in the "reversed" 
flow and is governed by 

mt) 
a V 2 T + v - V T = 

ot 
(2) 

In this reversed flow, the fluid velocity is everywhere equal and op
posite to that of the forward flow. 

The surface of the body is at a uniform temperature TB while the 
fluid is initially everywhere at temperature zero. We seek to prove that 
up to any time t, the total heat transferred from the body is the same 
for the two flow directions. In this event, the instantaneous overall 
heat transfer rate must, at any time, be identical for the two flow di
rections. As in the steady transport, we shall be able to prove this 
under somewhat more general conditions on the body surface. 

At any time <r, taken to be less than t, equation (1) is 

«v2r-vvr = 
aT(o-) 

do-
(3) 

while at time t — a, the equivalent expression for the reversed flow, 
equation (2), is 

a V 2 T + v - V T = 
oT{t - o-) 

do-
(4) 

We shall hold t constant throughout the argument. 
Multiplying equation (3) by T{t - a) and equation (4) by T(a) and 

then subtracting produces 
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a[T(t - < T ) V Z 7 V ) - 7 » V 2 T ( t - a)\ 

- v • [T(t - a)VT(a) + T{o)VT(t - a)] 

*T(o) . m, s dT(t • 
= T(t - a) 

da 
+ T(a) 

a) 

da 
(5) 

Following rearrangement and the application of some simple iden
tities, equation (5) becomes 

V • \a[T(t - ff)VT(c) - T(a)VT(t - a)}} 

- v - V [ T ( t - a)T(a)]= — [T(t-a)T(a)} (6) 
dff 

Since the fluid is incompressible 

V-v = 0 (7) 

equation (6) can be further simplified. Application of the vector 
identity 

v • V<£ = V • (v<t>) - <I>V • v (8) 

where <j> is a scalar field, t h e n yields 

V • \a[T(t - a)VT(a) - T(a)VT(t - a)] - vT(t - a)T(a)} 

= ^-[T(t-a)T(a)] (9) 
d a 

Now, we integrate equation (9) over the fluid volume bounded in
ternally by the body surface B and externally by a spherical surface 
•S centered about the body. We also integrate with respect to time from 
the start of the process to time t later. Application of the divergence 
theorem allows this to be written 

f CC [a[T(t - a)VT(a) - T(a)VT(t - a)] 
Jo JJB+S 

-\T(t - a)T(a)} • MAda 

^So SSSv^[T{t~a)T{a)]dVd(T (10) 

n is an outward drawn unit normal on the fluid surfaces. It extends 
into the body B and out of the spherical shell. A and V are the surface 
area and volume of the region. 

Since both temperature distributions are everywhere continuous 
for all time greater than zero and continuous in the limit as time ap
proaches zero, we can interchange the order of integration for the right 
side of equation (10). Having done this, we integrate immediately with 
respect to time and find that the integral vanishes by virtue of the 
uniform initial condition. Separating the surface integrals on the left 
side of equation (10) and rearranging gives 

C* CC {a[T(t - a)VT(a) - T(a)VT(t - a)] 
Jo JJB 

- \T(t - a)T(a)\ • MAda = - f CC 
Jo JJs 

\a[T(t - a)VT(a) - T(a)VT(t - a)} 

- v T ( t - a)T{a)\-ndAda (11) 

Let us examine the integral over the body surface. If the body 
surface is at a uniform constant temperature TB for all time and if 
there is no net fluid source or sink within the body, i.e., 

CC v • MA = 0 (12) 

we simply have 

aTB f CC [VT(o)-VT(t- a)]-MAda (13) 

Jo JJB 

on the left side of equation (11). The body could, for example, be po
rous and the flow would still satisfy equation (12). 

Additionally, the same simplification can be obtained if regions of 
the body surface are insulated and impermeable but not necessarily 
at temperature Tg. Such regions make no contribution to the left side 
of equation (11). As the normal components of the fluid velocity and 
temperature gradient are both zero, they make no contribution to the 
heat transfer. These boundary conditions on the body are identical 
to those described by Brenner [1] in his analysis of steady trans
port. 

Substituting expression (13) into equation (11) and multiplying 
by pCp/TB gives 

C CC k[VT(a) - VT(t - a)] • MAda 
Jo JJB 

= - T B - 1 P CC \k[T(t - a)VT(a) - T(a)VT(t - a)] 
Jo JJs 

- pCpvT(t - a)T(a)} • MAda (14) 

p is the density, Cp the specific heat at constant pressure and k is the 
thermal conductivity of the fluid. 

Remembering that A is an inward normal to the body, we note that 
the net heat transferred from the body during the time interval from 
0 to t is, for the forward flow, 

Q= C CC kVT(a)-MAda 
Jo JJB 

while, for the reversed flow, 

Q Jo JJB 
kVT(t - a) • MAda 

(15) 

(16) 

We thus have an expression for the difference between the heat 
transferred for the two flow directions in terms of the solutions on 
surface S, a surface which we shall let recede from the body. From 
equations (14, 15) and (16), 

Q-Q = Tfl"1 JQ ' j j \k[-T(t - o-)VT(ff) + T(a)\7T(t - a)] 

+ pCp vT(t - a)T(a)\ • MAda (17) 

It remains only to show that the integral over surface S vanishes. To 
do this, the radius of the spherical surface is allowed to increase 
without bound, thus permitting us to examine only the asymptotic 
behavior of the transport at large distances from the body. 

Sufficiently far from the body, at time t and all prior times, the 
(positive definite) temperatures and the absolute values of the tem
perature gradients are less than their values in the subsequent steady 
state. This constraint will permit us to show that each of the three 
integrated terms on the right side of equation (17) vanishes as the 
spherical radius r of the surface increases without bound. 

Taking the first of these terms and using the subscript / to denote 
the ultimate steady-state, we have 

. N o m e n c l a t u r e -
A = area 
Cp = specific heat at constant pressure 
c = concentration 
D = molecular diffusivity 
K = reaction rate constant 
k = thermal conductivity 
A = unit normal vector 
Q = heat transferred from body 
r = radius of spherical surface 

T = temperature 
t = time 
U = fluid speed relative to translating 

body 
V = volume bounded by surfaces B and S 
v = velocity 
2 = unit vector in direction in uniform 

streaming 

a = thermal diffusivity 
6 = polar angle 
p = density 
a = time 

Subscripts 

B = body surface 
/ = final steady state 
S = spherical surface 
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T(t - a)<Tf 

and 

\VT(a)-h\ < \VTrn\ 

for sufficiently large r. Thus 

T(t- <r)|VT((j)-n.| <Tf\VTrn\ 

(18) 

(19) 

(20) 

in this region. 
We now examine the asymptotic behavior of this expression at large 

r. Considering first the case of a translating body, the fluid velocity 
far from the body approaches uniform streaming. In the frame of the 
body, 

v ~ Uz as r —• <*> (21) 

where U is the speed of translation and z is a unit vector indicating 
the direction. Remaining terms in the velocity may be as large as o[l]; 
they are 0[r _ 1] in a creeping flow and 0 [ r - 3 ] in potential flow. Using 
this outer flow and the steady form of equation (1), we find the well 
known [6] asymptotic relation. 

iirkr 
exp[-£/ r ( l _ cos0)/2a] as r - • °° (22) 

A dot denotes differentiation with respect to time. 0 is the polar angle 
measured from the z direction. Correspondingly, equation (2) 
yields 

.A. 
4irkr 

exp[—Ur(l + cos0)/2a] as r (23) 

Substituting equations (22) and (23) into equation (20) gives us 

T(t-<j)\VT(o)-A\ < 
, Q$f U( l -cos f l ) 

(4irkr)2 2a 

21 a s r —»• ' 

exp(—Ur/a) as r -*• °° 

(24) 

(25) 

or, in fact, o[r~n] for arbitrary n. 
In the absence of translation, v vanishes far from the body as it does, 

for example, in the electroconvective flow of [2, 3]. In this case, 

and 

Tf 

Tf< 

iirkr 

4irkr 

Consequently, 

T(t-<r)\VT(a)-A\ < QfQf 
(47rfe)2r3' 

21 as n —- < 

(26) 

(27) 

(28) 

(29) = o[r '\ as n 
Obviously, the second term on the right side of equation (17) is sim 
ilarly bounded for either case. 

T(ff)|VT(t - a)-n\ = oh - 2 ] as r - (30) 

The final term on the right side of equation (17) is likewise bounded 
because the fluid velocity approaches uniform streaming in the 
presence of translation and approaches zero in its absence. In either 
case 

\v-A\T(t- <r)7V) = o [ r - 2 ] a s r - * « , (31) 
Substituting equations (25) or (29,30) and (31) into equation (17) 

and noting that the area of surface S is 0[r2], we find that the entire 
integral vanishes. Accordingly, we have found that 

Q = Q (32) 

for any arbitrary time t. The total heat transferred up to any time is 
independent of the flow direction. It follows immediately that the 
instantaneous heat transfer rate is invariant to flow reversal. 

This result need not be limited to the transport following a single 
step change in temperature difference between the body and the 
surrounding fluid. The equations governing this transport are linear. 
Thus, by Duhamel's theorem, the temperature solutions for a series 
of steps in the temperature difference may be superposed to describe 
any time dependent uniform body temperature. As the transport rates 
associated with each step are invariant to flow reversal, their sums 
must also be invariant. The theorem therefore holds when the body 
temperature TB is not constant in time. Consequently, we also con
clude that the transient temperature response of a homogeneous 
closed body must be invariant to flow reversal if the body is at a uni
form temperature throughout. 

D i s c u s s i o n 
As intended, we have shown that the overall rate of transient heat 

transfer from a body with uniform surface temperature is invariant 
to pointwise flow reversal. This holds for bodies of arbitrary shape 
and asymmetric geometries and flows; symmetry is not invoked in the 
argument. The theorem is valid even for high Peclet number transport 
in which local transport rates may differ tremendously under flow 
reversal. It is also not limited to a step change in the temperature 
difference between the body and the surrounding fluid. Solutions for 
the response due to a series of steps in the temperature difference may 
be superposed to establish validity of the theorem for any time de
pendent body temperature. 

Flow reversal is physically possible in both potential and creeping 
flows. Moreover, physically significant transport problems occur in 
creeping flow and, for low Prandtl number fluids, in the unseparated 
potential flow outside the viscous boundary layer. Beyond these limits, 
the theorem is valid and applicable even when flow reversal is not 
physically possible or has no physical significance. Numerical calcu
lations of transport rates may therefore be checked against calcula
tions for the numerically reversed flow, thus providing an unusually 
comprehensive global test. The theorem is valid and useful in this 
context for any incompressible streaming flow past a closed body at 
uniform temperature—regardless of the Reynolds or Prandtl num
bers. 
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APPENDIX 
Extension of the theorem to mass transfer with a homogeneous first 

order reaction is accomplished with little change to the argument in 
the body of the paper. Using c to denote concentration, D to signify 
molecular diffusivity and with a reaction rate constant K, the con
centration in the forward flow obeys 

dc(t) 
DV2c -\-Vc-Kc--

dt 
(Al) 

This relation replaces equation (1) describing the temperature dis
tribution. For the reversed flow, 
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£)V2c + v • Vc — Kc = (A2) *ne r e a c t ' o n r a t e terms cancel in the concentration equivalent of 
dt equation (5). It remains only to note that because the reaction will 

The boundary and initial conditions are analogous to those imposed d e P l e t e t h e concentration, the analogs to the thermal asymptotic 
n the temperatures relations are sufficient to bound the asymptotic behavior. The ex-

° Following the main argument through equation (5), we find that t e n s i o n o f t h e t h e o r e m t h e n Allows. 
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Optimized Performance of 
Condensers with Outside 
Condensing Surfaces 
The purpose of this paper is to find an optimum surface geometry of vertical condenser 
tubes where condensation takes place on the outer surfaces. The guiding principle on op
timum condensation performance is to make the thickness of condensate liquid on the 
surfaces as thin as possible. A vertical tube with longitudinally parallel tiny fins is prefer
able because condensate is made thinner over the widest possible region. According to an 
analysis, there are four controlling factors for the optimum fin; sharp leading edge, gradu
ally changing curvature of fin surface from tip to the root, wide groove between fins to col
lect condensate and horizontal discs attached to the tube to remove condensate. The ana
lytical result is checked by experiments using R-113. The optimum fin shape, fin pitch 
and spacing of discs are found by numerical calculations for R-113 andwater. 

Introduction 
Condensers with a highly enhanced performance are urgently re

quired in new energy resource developments such as binary cycles in 
geothermal and ocean thermal plants and waste heat recovery plants. 
Many methods [1] for enhancing condensation heat transfer have been 
proposed, but few of them have been studied from the standpoint of 
optimization by exploiting enhancement mechanisms to the fullest 
extent. The purpose of this study is to investigate the optimum finned 
tubular condensers where vapor condenses on the outside surfaces 
of the tubes. Condensers of this configuration are preferable because 
of less pressure loss to the vapor flow. When vapor condenses on 
horizontal tube banks the heat transfer coefficient becomes smaller 
on the lower rows of the tubes due to thickening layers of condensate. 
Also in vertical tube condensers, the tubes have a deteriorating heat 
flow on the lower parts due to thickening liquid layers. 

The guiding principle to develop condensers with a highly enhanced 
performance is to make the liquid film as thin as possible over the 
possibly widest condensing heat transfer surface. To realize this 

, principle, the authors have taken up vertical tubes of which outside 
condensing surfaces have an array of vertical small fins and disk at
tachments to remove condensate from the fin surfaces before the 
liquid becomes too thick. Figure 1 shows a tube studied in this report. 
Circular disks are attached in order to remove the condensate flowing 
down from above and to expose new condensing surfaces below disks. 
The main advantages of this tube arrangements over other forms are 
as follows. 

(1) It is possible to exploit a wider condensing surface than a hori
zontal tube whose lower part of the surface is covered with a pendent 
liquid layer. (2) Forced removal of the condensate by disks not only 
avoids the deterioration of heat transfer on the lower part but also 
prompts direct contact heat transfer between liquid drops freely 
falling from the disks and flowing vapor. It was reported in reference 
[2] that a vertical finned tube with the disks has high heat transfer 
coefficients about twice those on a tube without the disks. However, 
they did not provide a reason why or the optimum distance of the 
runoff disks. The present paper reports the optimizing process for the 
selection of the best fin shape and disk spacing, and at the same time 
provides full information on designing optimum condensers with 
outside condensing surfaces. 

Condensation on Vertical Surfaces with an Array of 
Fins 

There are many studies of condensation along finned surfaces. 
Among them, references [3-5] report that a heat transfer surface with 

many small sharp-edged fins has a very high condensation heat 
transfer coefficient in comparison with a smooth surface. The en
hancement is found to be brought by the following mechanisms: On 
sharp fin tips with a very small radius of curvature, a strong surface 
tension aids the removal of condensate from the tips, thereby pro
ducing a very thin liquid film. In addition to this effect, the liquid 
layers on side surfaces of the fins are also expected to become locally 
very thin when the action of surface tension to bring the liquid into 
grooves between fins is strong enough. Condensed liquid near the tip 
of the fins is driven nearly horizontally towards the grooves by the 
surface tension and the liquid flows vertically down the grooves under 
gravity [5]. 

The effect of surface tension on condensation on a finned surface 
was first recognized by Gregorig [6]. However, his work may be jus
tified near the fin tip as his analysis is made under the condition of 
thin film thickness; therefore it cannot be applicable to the region 
between the tip and the trough and the trough region.where the film 
is very thick. Pertaining to the fundamental equation, the equation 
reduced by Gregorig is the differential equation of the second order. 
The fundamental equation introduced in this paper of the fourth 
order which is reported for the first time pertains to the film con
densation around fins. This big difference of the equations is caused 
from the assumption of thin film made in the Gregorig analysis, and 
the authors would like to emphasize that the present analysis uses 
much less restrictive assumptions than Gregorig's analysis; therefore, 
the results are applicable to fins having shapes of much wider variety 
and to more various conditions where the thickness of film is thick 
in or near the trough than the one considered in the previous litera-

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by The Heat Transfer Division Feb
ruary 14,1980. Fig. 1 Vertical tube 
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ture. Besides, Gregorig's optimum contour is difficult to manufacture 
due to the restriction of thin film thickness over the whole surface, 
so we have chosen three configurations as representative of practical 
importance and easy manufacturing. 

Edwards, et al. [7] proposed a condensation model of a heat transfer 
surface with triangular fins on the assumption of liquid film attaching 
to the tip of fins with a contact angle. The effect of a locally thin 
condensate film on the side of fins was not considered in their calcu
lations. Fujii, et al. [8] analyzed condensation on a vertical surface with 
sinuous fins, but also did not take the effect of locally thin film on fin 
surfaces into account. Panchel, et al. [9] also analyzed a sinuous fin, 
but the surface temperature of the fin was assumed to be constant. 
Recently, Webb [10] studied the optimization of a fluted surface, but 
he made the same approximation as Gregorig's. Surface tension of the 
condensate in the trough induces a strong suction flow near the side 
surface of the fin. The analysis of Gregorig type [10] does not include 
this side surface effect, which plays an important role in enhancement 
performance, and is unable to accurately predict the overall perfor
mance of enhanced condensation surface. In reference [10], the 
temperature of the fluted surface was assumed to be constant. So, the 
conduction effect of fin materials could not be investigated even 
though it is very important when the fin has an enhanced performance 
and high surface heat flux. Variation of the condensate film thickness 
and variation of the local heat transfer coefficient in the vertical di
rection are newly analyzed in our paper. This point is very important 
in contrasting the contributions of the present work and reference [10]. 
The analysis by reference [10] cannot make analyses of performance 
of runoff disks and of optimization of a spacing of the disks, because 
the condensate is pulled up by capillary force in the troughs in the 
neighborhood above the disks. This is an important phenomenon to 
be taken into account to find an optimum spacing of the runoff disks. 
Optimization of the disk spacing was totally out of scope of reference 
[10]. 

Figures 2, 3 and 4 are the cross-sectional views of three represen
tative contour of fins which are used in analyses in the present paper. 
Figure 2 shows the triangular fin with a small leading edge radius. 
Figure 3 shows the wavy fin with rather larger radii at the leading edge 
and the groove bottom. Figure 4 shows the fin having a sharp leading 
edge and a wide flat-bottomed groove which should hold more con
densate than the other fins. 

F u n d a m e n t a l E q u a t i o n s 
In comparison with the small height and pitch of fins, the radius 

of the tube is large enough to be neglected in analyses, so that we will 
discuss a vertical heat transfer surface on which fins are provided. The 
vertical length of the surface is taken as h corresponding to the spacing 
of disks which remove condensate from the condensing surface. As 
the analyses on the three fins shown in Figs. 2-4 are similar, only the 
analysis on the triangular fin in Fig. 2 is shown in detail. 

The geometry of the surface is specified by the following three 
factors: ro = fin edge radius of curvature, p = fin pitch and b = fin 
height, e is the thickness of condensate at the bottom of the 
groove. 

In the analysis on the triangular fin shown in Fig. 2, the coordinates 
are x in the gravitational direction, y in the horizontal direction and 
z in the direction normal to the fin surface. The half tip angle 6 of fin 
is given by 

d = tan- 1 (p/2b) (1) 

The side surface of the fin is divided into three regions for the 
analysis: These are the leading edge region (region I, y = 0 ~ a), bot
tom region (region III, y > c) and intermediate region (region II, y = 
a~c). Adopting the assumption in our previous report [5], the leading 
edge of the fin forms a parabola in region I which is smoothly con
nected with the surface in region II. So it is convenient to employ 
parabolic coordinates (£,»;) to analyze region I. The cross-sectional 
contour of the fin is assumed by the parabola of r\ = s and the leading 
edge radius of the fin is given by r0 = s2. The boundary separating 
region I and II is given by £ = s/tand where the angle of inclination 
of the parabola r/ = s to the line t\ = 0 is d. The y coordinate at £ = 
s/tan 6 is a = s2/(2 sin 6 tan 6). 

The following assumptions are made in the analysis. 
1 Vapor is saturated and interfacial shear between liquid and 

vapor is negligible. 
2 Temperature distribution due to thermal conduction in the fin 

is approximately one-dimensional, that is, temperature varies from 
the root toward the tip, but it is constant in the direction normal to 
the symmetric line (AB in Fig. 2). 

3 In momentum and energy equations, inertial and convective 
terms are small compared with viscous, gravity and conductive terms 
as made in the Nusselt analysis. 

4 Variation of condensate flow rate in the gravitational direction 
in regions I and II and variation of the curvature of liquid film surface 
in the gravitational direction in regions I and II are much smaller than 
those in the horizontal direction along the fin surface. 

5 As the liquid film is thin in regions I and II, changes in velocity 
and temperature along the surface are smaller compared with those 
in the direction normal to the surface. Hence, the boundary layer 
approximation is applicable. 

6 Even at the top of leading edge, there always exists a film of fi
nite thickness. 

7 The contour of liquid-vapor interface in region III is largely 
determined by surface tension and is approximated by a circular 
arc. 

These assumptions are justified as follows. The analytical result 
obtained by use of R-113 and a copper triangular fin of h = 50mm, 
p = 0.7mm and 6 = 0.61mm for AT = 10K is used as a representative 
case for the assessment. 

This analysis includes thermal conduction effect in the fin. In re-

aNomenc la ture . . 

a = length of region I (m) 
b = depth of groove (m) 
c = length of regions I and II (m) 
dh = hydraulic radius of liquid film in region 

III (m) 
e = thickness of condensate liquid at groove 

bottom (m) 
G = liquid flow rate in region III (m3/s) 
g = acceleration of gravity (m/s2) 
h = spacing of disks or vertical length of heat 

transfer surface (m) 
L = specific latent heat (J/kg) 
p = pitch of fin (m) 
re = radius of liquid film surface in region III 

(m) 
ro = radius of fin leading edge (m) 
s = value of ?j at fin surface (m1'2) 

T = temperature (K) 
Twi — temperature at fin root (K) 
t = thickness of the fin at the root (m) 
u = velocity in x direction in region III 

(m/s) 
V = liquid volumetric flow rate (m2/s) 
x = coordinate in gravitational direction 

(m) 
y = coordinate in horizontal direction along 

fin surface (m) 
z = coordinate in horizontal direction to fin 

surface (m) 
a = average heat transfer coefficient based on 

the projected area (W/m2K) 
AT = temperature difference between vapor 

and condensing surface (K) 
8 = thickness of condensate film (m) 

5, = thickness of condensate film in ?/ coor
dinate (m1/2) 

e = length of free surface in region III (m) 
8 = half tip angle of fin 
X = thermal conductivity (W/mK) 
ix = viscosity (kg/ms) 
p = density (kg/m3) 
d> = distance from fin tip towards the root 

(m) 
a = surface tension (N/m) 
£ = parabolic coordinate (m1/2) 
i) = parabolic coordinate (m1/2) 
Subscripts 
c = point bounding regions II and III 
s = saturated vapor 
w = fin surface 
1 = condensate 
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gard to assumption (2), a detailed calculation of two-dimensional 
thermal conduction in an equilateral triangular fin shows that the 
maximum temperature variation in the direction normal to the 
symmetric line is less than 8 percent of that along the symmetric di

rection. As for assumption (3), the numerical result obtained under 
the condition cited above shows 

Fig. 2 Triangular fin 

( inertia term \ 

viscous term/max 
0.01, 

/convective term\ 

\conductive term/max 
= 0.08. 

As for assumption (5), the result shows (d5/dy)max = 0.06, therefore, 
the changes in velocity and temperature in the y direction are less than 
about 6 percent of those in the z direction. Pertaining to assumption 
(6), the radius of curvature at the leading edge should be finite, and 
the finite thickness of liquid film is physically acceptable. Assumption 
(7) will be discussed later. 

As explained in our previous report [5], the equation to determine 
the thickness of liquid film in region II is written as 

a d 

3fidy dy \dy2/ -SI 3/2' Xi(T. - Tw) 

pL8 
(2) 

The left side is the differentiation of the flow rate drawn to the y di
rection by surface tension and the right side represents condensing 
rate. 

According to assumption (2), the conduction equation in the fin 
is 

dy 

dTw 

d{y cos 8) 
y sin 8 

Xi(r, - Ta) (3) 

Equation (2) is written in terms of the parabolic coordinate [4]. 

g 3. 
3MV£2 + s 2 dd " 

V£2 + s2 3£2 dd„ d88„ 

d£3 (£2 + s2)3'2d£ 
His + 8,) 
(£2 + s 2)3/2 

•Ai(T. - Tw) 

pLy/y + sZS, 
(4) 

where Sv is film thickness expressed by rj coordinate. Equation (3) is 
also written as 

\ws d2Tw Xi(T, - Tw) 

VI 2+ s2 d£2 
V¥+i**n 

(5) 

The radius of circular arc in region III is given from the geometry 
of the groove as 

(e sin d - 5C)2 + (e sin 8 tan 6 + «/cos 0)2 

r = (6) 

2e + 2§c sin 8 

where <5C is the thickness of liquid film a ty = c, and e is the length of 

Fig. 3 Wavy fin Fig. 4 Flat bottomed groove 
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free surface in region III. 
In reference to Fig. 2, e and e are related to c as 

(b-c cos 8)11 - sin (30 deg + 6)) 

(1/sin 8) - sin (30 deg + 8) 

e = b — c cos 8 — e 

(7) 

(8) 

by matching the slopes of the film surfaces at y = c and taking them 
as tan 30 deg. The difference of the results between taking them as 
tan 30 deg and tan 45 deg is about 3 percent. The fact that a slight 
change in the contour of region III gives little effect on the results 
proves the propriety of assumption (7). 

The liquid film is thick in region III, and the liquid velocity in this 
region in the horizontal direction is small compared with that in the 
gravitational direction. Therefore, the force balance is maintained 
between viscous force and gravity, and we have 

ld2u d2u\ 
• = 0 0) 

where u is the velocity in the gravitational direction. The volumetric 
flow rate G in region III is obtained for a given e by integrating the 
above equation using a finite element method. Then the following 
relation is obtained for an equilateral triangular fin. 

G = 0.0212 pge*/fi 

The boundary conditions are 

£ = 0: ^ = 0, ^ = 0 , 
d8„ 

•• s / t an 8, 

; = 0 , 

y •• 

dS 

dy 
• = t a n 

d28 

dy2" 

tan 

d28„ 

d \ _ dT« 
d£3 ' d£ 

a: 8 = V£2 + s2 K 

+ s + £(d g„/d|) 

(10) 

(11). 

If - (s + «,)(<(«). 

d£ 

^ - s - 5 , 

d_ 

dy 

ld2S 

[dy2 
1 + 'r"' 

3/2' 

dS, 

1 d36„ 

/ d|J 

£2 + 

; c: 

s 2 d £ 3 

3£2 

d5 

dy 
= tan [sin-1 [cos 8 

d28\ 

dy2' 

y 

• e(2 cos 8 

(? + s2)3 d£ 

8 = 8C, 

d&v | 3|(s + 3,) 
(£2 + s2)3 (12) 

•l)/[r e(2-2sin0-cos0)])] , 

J/WH 
a 

8 ^ 
. dy 

d2$ 

,dy2 

G 

l + |f 
,'dy, 

3/2 
= VC, 

->r ycdx 

(13) 

(14) 

(15) 

(16) 

where <o is the distance from fin tip to the root, Twl is the temperature 
of the fin at the root and re is calculated from equation (6) which 
contains the information such as e and e about the geometry of the 
trough. The analysis on the other fins (Figs. 3 and 4) can be made 
similarly. Equation (11) expresses the symmetry condition at the 
leading edge of the fin. Equation (12) expresses that film surface 
contours in regions I and II are smoothly connected with the third 
derivative at the matching location of both regions. Equation (13) 
expresses that the contours in regions II and III are smoothly con
nected with the second derivative. Equations (14) and (15) express 
that the liquid flow rate in the x direction in region III is equal to the 
total volume of the liquid flowing into region III from region II. 

< 1 0 " 8 

Average heat transfer coefficient a is obtained from condensate flow 
rate Gx = h leaving the groove as 

a= pLG*=h (17) 
hp(Ts-Twl) 

Equations (2-5) are integrated by the Runge-Kutta method with the 
boundary conditions (11-14) and (16). The calculation is that values 
of 8C and Vc at y = c are corrected iteratively so as to satisfy the 
boundary condition (11) at J = 0 within following accuracy range. 

dd„ . a „ „ d36, 
- J < 1 0 - 4 , — s8„3—; 
d£ 3/x ' d?3 

As the result the relation between e and Vc is obtained. With that 
relation and equation (10), equation (15) is integrated numerically 
and heat transfer coefficient a is obtained by equation (17). Grid 
spacings in the numerical calculation are taken as 

Ax = 5 mm 

Ay = (c - o)/40, Af = s/(10 tan 8) 

The error in the resultant average heat transfer coefficient a is esti
mated to be within 3 percent. 

At points a little above the disk which removes the condensate from 
the condensing surface, the condensate is pulled up by capillary action 
and fills fin grooves. In this region, force balance is maintained by 
surface tension and gravity and equation (18) is used. 

dx \re 
(18) 

The contour of wavy fins shown in Fig. 3 is assumed to consist pf 
two parabolas forming the leading edge part and the groove bottom. 
The whole shape of slender fins shown in Fig. 4 is assumed to be a 
parabola directly connected with the flat bottom. Therefore, both 
analyses are made in parabolic coordinates that are similar to the 
analyses in region I of the triangular fin. 

Numerical solutions to the above equations enable parametric 
surveys to find the optimum geometry of fins for a specified fluid and 
working condition. Prior to optimizing analysis, the proof of the ad
equacy of the flow model and analysis described above is made by 
experiments which will be explained next. 

Experiments to Prove the Theory 
One of the purposes of this paper is to find the fin configuration that 

produces the highest heat transfer performance for a given vertical 
length of the condenser surface. From numerous possible fin config
urations and considering thermal conduction effect which is very 
important to fins of high performance and heat flux, the authors have 

Cooling water Vessel (250 X 250 X 300mm3) 

Condensation surface 

Cooling water 

Heat insulator 

Measuring cylinder 

Valve 

R-113 

Fig. 5 Experimental apparatus 
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chosen three configurations as representative ones of practical im
portance. The choice is thought to be rational in view of the existing 
manufacturing techniques, and the analysis of heat transfer on these 
fins focussing on optimizing condensation preformance should be 
contrasted to the previous ones [10] that considered only fluted 
(sinsoidally continuous) surfaces under condition of thin film thick
ness over the whole fin surface. 

Equilateral triangular fins manufactured with high precision were 
used in experiments, to prove the adequency of the flow model and 
the analysis based on the fundamental differential equation of the 
fourth order and to make an accurate comparison between theory and 
experiments. Based on the consideration mentioned above a vertical 
surface of 50mm height was tested. As the fin size is much smaller than 
the width and height of the tested surface, the tested surface well 
simulates the outside surface of a vertical condenser tube with tiny 
fins. 

The sketch of the experimental apparatus is shown in Fig. 5. The 
test surface, the heater to generate vapor and the sub-condenser were 
set in a sealed acrylic vessel. The vertical heat transfer surface was 
attached to a backing copper block. The block was cooled by water 
from its back and thermally insulated by a surrounding ethylene 
tetrafluoride (Teflon). The liquid condensed on the test surface was 
gathered by a special trough (not shown in the figure) and poured into 
a measuring cylinder. The magnetic valve underneath the cylinder 
closed the outlet of the cylinder, so that the condensation rate was 
measured by the rise of liquid level in the cylinder with a stop watch. 
Average condensation heat flux on the heat transfer surface was then 
found by dividing the rate of latent heat flow by the projected area 
of the test surface (50 X 50 mm2). Care was taken to purge noncon-
densable gases before every run of the experiment. 

Vapor temperature Ts was measured by five copper-constantan 
thermocouples of 0.2mm in diameter. Vapor temperature in the vessel 
was found constant within 0.1K. The temperature difference AT and 
the heat transfer coefficient a are defined as AT = Ts — Tm\ and a 
= q/AT, respectively. Here Tw\ is the averaged temperature at the 
fin root, and q is the heat flux. In order to find Twh temperatures of 
the copper block at the points 2mm behind fin tips were measured 
by thermocouples of 0.2mm in diameter. They were set at several 
positions such that the one at the center, and others at the upper, 
lower, left and right locations. Reading of these thermocouples were 
considered to yield the averaged temperature at the surface 2mm from 
the fin tip. Meanwhile, from the measurement of condensation rate, 
the averaged heat flux was obtained as mentioned above. From these 
averaged temperature and heat flux, the temperature at the fin root 
was calculated taking thermal conduction in the copper block into 
account, and this was defined as Twi. 

The condensation rate at the sub-condenser was controlled to 
maintain constant temperature, and the vapor generation rate by the 
heater was maintained constant. In the analysis the fin root temper
ature is assumed constant, but the wall temperature of the test surface 
was found tio vary in the vertical direction. The local temperature 
difference AT slightly increased in the gravitational direction and 
was about 0.8 times as large as the mean value at the upper part of the 
surface. Average heat transfer coefficient a of such surface is esti
mated to vary by about 5 percent from the value of the theoretical 
prediction. It was also attempted to find the accuracy of measurement 
by thermocouples, and error within 15 percent in a was found. Closer 
examination revealed that this was caused by tip soldering condition 
of thermocouples. 

The equations in the previous sections are solved using the di
mensions of the test surface and the physical properties of R-113 at 
325K. The leading edge radius ro, one or the most crucial factors for 
enhancement, was determined by microphotographic examination 
of the cut-out specimen as about 10 - B m. Figure 6 compares the pre
dicted and experimental values of the condensation heat transfer 
coefficient, a, and the temperature difference AT. The test surface 
in this comparison had fins of pitch p = 1.0mm, and height 6 = 
0.87mm. The theoretical prediction is in good agreement with the 
experimental data. The three additional curves are shown in Fig. 6 
to emphasize the enhancement mechanism brought by surface ten-
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sion. The lowest curve is Nusselt's theoretical solution of filmwise 
condensation on a smooth surface. The curve just above the Nusselt's 
solution is obtained by multiplying the Nusselt's solution by the area 
increase due to the fins (a factor of 2). It is obvious that the en
hancement of a factor of 7 on the smooth surface cannot be explained 
by the increase of heat transfer area. This is caused by surface tension 
effects at fin tip, on side surface and at groove bottom. In order to 
confirm the predicted optimum spacing of runoff disks, experiments 
by use of vertical long finned tube with disks is under way; the results 
will be reported shortly. 

Optimum Fin Shape and Disk Spacing 
A procedure to find the optimum fin shape which fully utilizes 

surface tension effect is described. Figure 7 is shown for comparison 
of local heat transfer rates of different fin configurations to explain 
enhanced heat transfer rate by utilizing the thin film region on a 
surface of fin, which has not been reported or drawn attention but is 
very important to condensation heat transfer enhancement of real 
fins. Figure 7 shows the variations in volumetric flow rate of con
densate V and film thickness 8 along the surfaces of the triangular fin 
(Fig. 2) and wavy fin (Fig. 3); where in case of R-113, for copper fin 
p = 1.0mm, 6 = 0.87mm, e = 0.34mm and AT = 10K. The abscissa 
u> is the distance from fin tip towards the root. The film thickness is 
about 0.6jum at the tip. Near the tip (a) < 1.5 X 10 _ s m, region I) the 
flow rate on the triangular fin is larger than that on the wavy fin. This 
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result is consistent with our previous report [4] and the fin with a 
sharp leading edge yields a thinner condensate film. On the other hand 
in the intermediate region (a> = 1.5 X 10~6 m ~ 1.7 X 10~4 m, region 
Hi) the difference between the flow rates decreases and at to = 1.7 X 
10~4 m the flow rate of wavy fin catches up to that of triangular fin. 
This is due to the fact that the side surface of the triangular fin is flat, 
while the surface tension caused by the curvature of the surface of the 
wavy fin controls the increase of the film thickness along the fin sur
face and causes enhanced condensation performance. It is concluded 
from this fact that a fin, the side surface curvature of which varies 
gradually to zero from tip to the root, is preferable. Figure 7 shows that 
after a swell the film thickness decreases again to become locally thin 
at about o> = 3 X 1 0 - 4 m. This phenomenon causes an enhancement 
of condensation performance of the same order for both fins and the 
points of minimum thickness occur almost at the same distance from 
the leading edges because both fin grooves have almost same widths. 
From this discussion, the contour of the flat-bottomed fin shown in 
Fig. 4 is preferable. The reasons are that the leading edge radius is 
smaller, the curvature of side surface gradually decreases and the 
points of the minimum thickness of film near the boundary between 
regions II and III are located far away from the leading edge as the . 
width of the groove is too large to hold the domain of thin film very 
widely. 

Figure 8 shows the relation between average heat transfer coeffi
cient a and spacing h of the disks, which remove condensate from the 
condensing surface, for both wavy and flat-bottomed copper fins using 
R-113. Figure 8 also shows the existence of optimum spacing for fins. 
This is explained as follows: For wider spacing, a lot of vapor con
denses on the tube surface filling the grooves in the lower part with 
condensate resulting in deteriorating condensing performance. On 
the contrary, for narrower spacing, the tube has a smaller average heat 
transfer coefficient because due to surface tension in the lower part 
of the tube, condensate on the disk is pulled up along the grooves, and 
fills them resulting in deteriorating condensing performance. Figure 
8 further shows that flat-bottomed fin has a performance of about 8 
percent higher than that of wavy fin at the maximum a. It should be 
noted that the flat-bottomed fins of t = 0.23mm have a performance 
less dependent on spacing than the wavy fins. This is a very important 
feature from manufacturing and cost standpoints when used in a 
practical condenser. It should also be noted that the optimum spacing 
of disks is smaller than 200mm not only for R-113 but for water and 
therefore the liquid film is laminar and no serious wave motion of 
liquid surface does occur. 

Figure 9 shows the relation between average heat transfer coeffi
cient a and the fin pitch p for flat-bottomed copper fins when steam 
is condensed on the fins. As small grooves are easily filled up with 
condensate, the heat transfer coefficient is low for tubes of smaller 
fin pitches. On the contrary, a tube with fins of too large pitches has 
a smaller number of fin tips and heat transfer coefficient is low as the 
heat transfer enhancement effect is not utilized enough. The con
denser tube provided with fins of the optimum pitch for a given fluid 
has the highest performance. The optimum value of fin pitch is p = 
0.5mm for the case of Fig. 9. In this figure, data for dropwise con
densation and several enhanced tubes are also shown [6,11-14]. As 
reference [15] reported, a scatter of data over a range of 190 ~ 350 
kW/m2K for dropwise condensation, two representative data [11], [12] 
are shown. It should be stressed that the maximum heat transfer 
coefficient for an optimum flat-bottomed fin is much higher than 
those of the enhanced tubes reported so far in [6,13,14] and is rather 
close to that of dropwise condensation with consideration of variation 
in data for dropwise condensation. 

The procedure to find the optimum configuration for given oper
ating conditions is summarized as follows. 

1 The optimum value of one parameter is calculated using the 
present analysis. For example the value of the other parameters must 
be assumed. In the case of Fig. 8, the optimum value of the spacing 
of disks is calculated. 

2 Using the obtained value of the parameter, for example the 
spacing of disks, the calculation is repeated until the optimum values 
for all parameters are found. 
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This paper takes thermal conduction of copper fin into consider
ation. An analysis of optimum geometry for alternative fin materials 
and internal configuration will be reported elsewhere. 

Conclusion 
Theoretical analyses and experiments are carried out to investigate 

the optimum performance and geometry of vertical tubular con
densers with small longitudinally parallel fins or the outside con
densing surface. The guiding principle of this paper is to keep the film 
as thin as possible over the possibly widest surface by use of surface 
tension. Our conclusions are: 

1 The experimental results for triangular fins prove the accuracy 
of the flow model and the analysis. 

2 The optimizing study reveals that a vertical tube provided with 
small fins, the side surface curvature of which gradually varies from 
fin tip to the root, with a sharp leading edge, a flat groove bottom, and 
circular disks to remove condensate is most preferable as a condenser 
tube configuration. 

3 The optimum pitch of fins and the optimum spacing of the disks 
are found. For example, a copper tube of 50mm in spacing of disks and 
of fins of 0.5mm in pitch and 0.87mm in height has ten times higher 
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average h e a t t ransfer coefficient t h a n a s m o o t h tube . 

4 T h e op t imized condens ing surface of small f l a t -bo t tomed fins 

has hea t t ransfer coefficient close to t h a t of dropwise condensa 

t ion. 
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Natural Confection Heat Transfer 
Between Cylindrical Tube Bundles 
and a Cubical Enclosure 
Natural convection heat transfer from a fixed array of four isothermal, heated cylinders 
to an isothermal, cooled cubical enclosure was experimentally investigated for both a hori
zontal and vertical position of the array. Included in this study are heat transfer, flow vi
sualization, and temperature profile results for Prandtl numbers in the range of .7 to 3.1 
X 10* and Rayleigh numbers, based on gap width, in the range of 6.3 X 106 to 6.9 X 108. 
Several geometric effects were observed. The vertical configuration convected less heat 
than the horizontal while a rotation about the vertical axis for each of these configura
tions had negligible effect on the overall heat transfer. The heat transfer results were cor
related and compared with previous enclosure results. The heat transfer correlations fit 
the data with an average deviation of less than 10 percent. 

Introduction 
Investigation in the area of heat transfer by natural convection 

within enclosures has increased dramatically in the last decade. This 
increase has been in response to advances in electrical packaging, solar 
heating technology, nuclear reactor safety, and handling of nuclear 
waste. Most recently the demands for energy conservation have in
creased the importance for a better understanding of natural con
vection within enclosures. 

Many studies have been made of natural convection from tube 
banks to an infinite atmosphere. Eckert and Soehngen [1] used a 
Zehnder-Mach interferometer to study arrays of horizontal cylinders. 
Eckert and Soehngen reasoned that the effect of the warmer wake 
around the upper tubes reduced the heat transferred since the tem
perature differential had decreased. Conversely, the staggered tube 
banks were not in the natural convection plume and an induced fluid 
movement of cooler air resulted in a greater heat transfer. 

Lieberman and Gebhart [2] investigated the interactions between 
the natural convective flows of several closely spaced surfaces by using 
long, horizontal wires in a parallel array at several spacings and in
clinations. Other investigations, which include temperature and ve
locity measurements about a line source, have been conducted by 
Brodowicz and Kierkus [3], and Forstrom and Sparrow [4]. All of the 
aforementioned investigators found that cool air is induced into the 
plume from the sides and below the source. The influence of tube 
spacing and array on natural convection heat transfer coefficients for 
horizontal tube bundles has been determined experimentally by 
Tillman [5]. Conclusions by Tillman indicate that tube spacing has 
more effect on the heat transfer than the type of array. 

Natural convection from vertical tube bundles to an infinite at
mosphere has been studied by Davis and Perona [6]. They utilized 
42 tubes arranged in seven staggered rows of six tubes per row. Their 
experimental results compared favorably with theoretical results with 
the exception of the values in the region where the end support system 
had an apparent influence. 

Natural convection from tube banks to an enclosure has received 
only limited attention. Powe, Bishop, and others [7-11] experimen
tally and analytically studied the heat transfer to an enclosure from 
a single inner geometry. In addition, Kuehn and Goldstein [12] have 
developed an analytical model for multiple cylinders with a cylindrical 
enclosure (two-dimensional problem). Their results have not been 
verified experimentally. The effects of an incomplete enclosure on 
natural convection from a vertical array of horizontal cylinders has 
been investigated by Marsters [13,14]. 

The study of vertical tube bundles in enclosures has been mainly 
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within the low Prandtl number range. Dutton and Welty [15] re
searched the effects of cylinder spacing on the heat transferred from 
a vertical rod bundle in a vertical cylindrical enclosure utilizing liquid 
mercury as the fluid medium and uniform heat flux applied to the rod 
bundle. Results of this study showed that there is a strong dependence 
on cylinder spacing. 

The purposes of this study are to determine the heat transferred 
between a set of four isothermal, heated cylinders and an isothermal, 
cooled cubical enclosure, to determine the effect of the position of the 
tubes within the enclosure, and to compare the results with the 
findings of previous studies on heat transfer from single bodies to an 
enclosure. Four fluids and inner body positions are utilized in studying 
the heat transferred. The body positions include the set of cylinders 
in both a horizontal and vertical position and include a 45 deg rotation 
about the vertical axis for each position. The fluids used are air, water, 
99 percent glycerin, and a Dow-Corning 20 cs fluid. 

Although the heat transfer problem is coupled with a fluid-flow 
problem, the intent of this study is directed primarily toward the heat 
transfer problem. Flow visualization and temperature profiles within 
the enclosure were obtained to aid in evaluating the heat transfer. 

Apparatus and Procedure 
The apparatus for this investigation consisted of a water jacketed 

cubical outer body, cooling system, power source, and a four cylinder 
inner body with supporting elements. One outer body system was used 
to obtain heat transfer data and temperature profiles while a separate 
system was utilized to photograph flow patterns. The assembled outer 
body and peripheral components are shown in Fig. 1 for the heat 
transfer apparatus. The outer body was constructed from 1.27 cm 
thick, type 6061 aluminum with an inner 26.67 cm cubical chamber. 
This was a jacketed design consisting of a separate 3.175 cm wide 
rectangular channel for each face of the cube. Access to the test 
chamber was provided through a 25.4 cm removable circular plate on 
the top inner face and a completely removable outer face. A closed 
system consisting of a chiller, pump, and storage reservoir provided 
water to cool the outer body. 

The flow rate of cooling water through each channel was controlled 
by a valve which fed four inlet and outlet ports. This arrangement 
allowed the temperature of each face to be controlled independently 
in order to achieve an isothermal outer body (to within 2 K). 

The outer body used for flow visualization was nearly identical to 
the one previously described. The major difference was that the body 
was constructed from a clear polyvinyl and all portions were painted 
black except for a light source slot placed vertically on one side and 
one clear face which allowed photographs to be taken of the plane il
luminated by the light source. An identical cooling system was in
stalled and the monitoring and power devices were slaved from the 
heat transfer system. This system is described more fully in [11]. 
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The inner body design consisted of four identical copper cylinders 
and a supporting system which allowed it to be symmetrically cen
tered in the enclosure in either the horizontal or vertical position. Each 
cylinder was 17.78 cm long, 4.12 cm o.d., and 32 cm thick. This inner 
body is shown in Fig. 2 in the horizontal position. A direct current 
power source and several sets of heat tapes on the inside of each of the 
cylinders provided heating for the inner body. Cylinder temperatures 
were determined from thermocouples imbedded in each cylinder. The 
inner body temperature variation never exceeded 12 percent of the 
temperature difference between the inner and outer bodies and av
eraged 4 percent for all of the data. 

To obtain temperature profiles within the test chamber, the outer 
body was designed with nine thermocouple probe ports. These con
sisted of one common and four additional ports on each of two sepa
rate axes. One axis was on a vertical plane through the center of the 
cube while the other was the vertical plane through the edge of the 
cube. The five ports in each axis were at 0, 34, 80,120, and 160 deg 
measured downward from the top center vertical axis of the body. 
Each thermocouple port had a center tube which moved through a 
fixed port tube. A vernier caliper attached to the thermocouple probe 
fixed the location of the probe within the enclosure to within 0.0025 
cm. These probes are shown in Figs. 1 and 2. 
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Cooling Water 
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Multiposition Switch 
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Fig. 1 Heat transfer apparatus 

.Nomenclature. 

Ac = total area of the cylinders 
B = distance traveled by the boundary layer 

on the inner body 
cp = specific heat at constant pressure 
g = acceleration of gravity, 9.81 m/s2 

Grx = Grashof number, p2g/S(Ti - Ta)x
3/ 

h = average heat transfer coefficient, Q/ 
ACAT 

k = thermal conductivity 
L = hypothetical gap width, R0 - Ri 
Nujc = Nusselt number, hx/k 
Pr = Prandtl number, cp/x/k 

Q = heat transfer by convection 
R = local position of thermocouple probe (R 

= 0 at cube center) 
Ra* = Rayleigh number, p2gfi(Ti - T0) X 

x 3cp/fik 
Raj = modified Rayleigh number, Rax(L/ 

Ri) 
Ri = inner body hypothetical radius equal to 

the radius of a sphere having a volume 
equal to the volume of the inner cylin
ders 

R0 = outer body hypothetical radius equal to 

the radius of a sphere having a volume 
equal to the volume of the outer body 

R(Q) = length from enclosing cube surface to 
cube center for angular position 9 

T = local temperature 
Ti = temperature of the inner body 
T0 = temperature of the outer body 
x = any characteristic dimension 
j3 = thermal expansion coefficient 
li - dynamic viscosity 
9 = temperature probe angular location 
p = density 
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Fig. 2 Inner body geometry

Sixteen fluid/geometry combinations were used to obtain 166 heat
transfer data points. With one of the fluids (air, water, 20 cs silicone
oil, or glycerin) in the enclosure the power was applied to the cylinders
and, after equilibrium was established (approximately 2 hr), the power
input; inner body temperature, and outer body temperatures were
recorded. The maximum temperature difference between the inner
and outer body was 90°C. Temperature profiles were obtained for
selected heat transfer runs. Flow visualization results were also ob
tained using air and the silicone oil with tracer particles of smoke and
fluorescent paint, respectively.

The heat transferred by natural convection was obtained by sub
tracting the radiation and conduction losses from the total power
input. The conduction losses were obtained analytically assuming
one-dimensional conduction down the insulated stem. Since the water,
silicone oil, and glycerin are opaque to radiation, only the air data
needed the radiation correction. The radiation loss was obtained by
evacuating the test space (approximately 15/lm) and taking the dif
ference between the total power input and the conduction losses.

Results
All of the fluid properties were evaluated at the arithmetic mean

of the inner and outer body temperatures. The hypothetical gap width
and boundary layer length which have been used in past investigations
[7-11,16] were also used as the characteristic dimensions in this in
vestigation. The hypothetical gap width (Ro - R;) is defined as the
distance from an imaginary outer sphere whose volume is equal to the
volume of the cube to an imaginary inner sphere whose volume is
equal to the volume of all the cylinders. The boundary layer length
is the distance traveled by the boundary layer on the inner body as
suming no flow separation. For the cylinders in the vertical position,
the boundary layer length was the cylinder height plus the diameter
and for the cylinders in the horizontal position, the boundary layer
length was one-half the circumference of the cylinder.

Geometric effects were found to be significant and were generally
consistent among the different fluids. When the inner body was
changed from the horizontal to the vertical configuration there was
a significant decrease in the heat transferred. This decrease was ex
hibited for all fluids; however, the relative magnitude varied for each
fluid. The decrease in heat transfer between the two geometries is
most pronounced in the low viscosity range (air) and becomes almost
negligible in the high viscosity range (glycerin) as seen in Fig. 3. The
resulting average decrease was 28, 8, 8, and 2 percent for air, water,
silicone, and glycerin, respectively. This suggests that the fluid vis-
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cosity tends to damp out geometric effects as has been postulated by
other investigators [9, 10].

Another interesting trend of the data in Fig. 3 is that the slope de
creases as the Prandtl number increases. The exponent of the Grashof
number decreases from about 0.25 for air to 0.20 for water and to 0.17
for the heavy oils (20 cs and 350 cs silicone oil) and glycerin. Exami
nation of natural convection heat transfer data from a single inner
body to an enclosure [7, 9] showed that these data also exhibited this
same trend. (This was evident only after examining their original
Nusselt number versus Grashof number plots.) The increase in slope
of the air data in Fig. 3 was not an indication of transition to turbulent
flow but rather some scatter in the data at the lower Grashof num
bers.

The effects of the heat transferred by the lower cylinder on the
upper cylinder in the horizontal position are similar to those observed
by Eckert and Soehngen [I]. The lower cylinder preheated the fluid
resulting in a reduced capacity of the fluid to transfer heat as moved
around the upper cylinder. When the average Nusselt number for the
upper cylinder was compared to the lower, the results were 84 percent
of the bottom cylinder for air, 70 percent for glycerin, 89 percent for
water, and 75 percent for silicone. Only in-line cylinders were con
sidered in this study.

Since each cylinder had two sets of heater tapes, one set on the
upper half (upper half refers to the cylinder in its vertical position)
and the other set on the lower half, a similar comparison was available
for the cylinders in the vertical position. The resulting average Nusselt
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number for the top half of each cylinder compared to the bottom was 
81 percent for air, 58 percent for glycerin, 64 percent for water, and 
65 percent for silicone. The effect of the smaller driving force for heat 
transfer is more pronounced in the vertical configuration than in the 
horizontal. This would explain, in part, why the Nusselt number was 
consistently higher in the horizontal position than in the vertical 
position. 

Another reason for the increased heat transfer from the cylinders 
in the horizontal position was the large eddies observed in the flow 
field for this geometry. These eddies can be seen in Fig. 4. In this figure 
the gravitational acceleration vector is acting vertically downward, 
the horizontal cylinder is in the center of the figure and the support 
sphere is visible in the bottom left corner of the figure. The two eddies 
directly above the cylinder and the large eddy below the cylinder 
enhanced the natural convection heat transfer in the enclosure. These 
eddies were not evident for the cylinders in the vertical position. 

The inner body, in both the horizontal and vertical configurations, 
was rotated 45 deg within the enclosure. This rotation had negligible 
effect on the heat transfer and only a small influence on the temper
ature profiles. This influence on the temperature profiles is shown 
in Fig. 5 for the cylinders in the horizontal position and in Fig. 6 for 
the cylinders in the vertical configuration. (Figure 2 defines R and 
R(B) for the 9 = 0 deg probe.) The temperature inversions in these 
figures were also observed by other investigators [7-11] and are due 
to the high rate of angular heat transport compared to the radial 
transport of heat. For the cylinders in the horizontal position the 9 
= 120 deg probe struck the inner cylinder resulting in the precipitous 
drop in the temperature shown in Fig. 5(R/R(Q) = .5). Another pre
cipitous drop in the temperature occurred at the outer body (R/R(B) 
= 1) for all of the probe locations except at 0 = 160 deg where there 
was very little convective activity. These large temperature gradients 
are due to the high velocity boundary layers at the inner and outer 
bodies. As a final point regarding the temperature distribution, all 
of the flow visualization and temperature profile data showed fully 
recirculating flows, the test fluids did not stratify. 

The heat transfer coefficient and the resulting Nusselt number in 
the correlations that are presented below are averages based on the 
total heat transferred by natural convection from the four cylinders 
and their total surface area. All of the heat transfer correlations were 
obtained using a standard least squares curvefitting technique. The 
deviation referred to below is the absolute difference between the data 
and the equation value divided by the data value and the average 
percent deviation is the sum of these individual deviations divided 
by the total number of data points. 

The best correlation for the cylinders in the vertical position is 

NuL = 0.262 Ra2;268Pr0-028 (1) 

with an average percent deviation of 4.53 and a maximum percent 
deviation of 18.48. In terms of a single correlating parameter, the best 
fit is 

NuL = 0.264 Raf74 
(2) 

with an average percent deviation of 9.34 and a maximum percent 
deviation of 30.58. For the cylinders in the horizontal position the 
results are 

and 

NUL = 0.498 Ra£246 Pr" 

NuL = 0.496 RaS;2' 

(3) 

(4) 

with average percent deviations of 6.92 and 6.95 and maximum per
cent deviations of 14.74 and 15.27, respectively. 

Evaluation of equations (2) and (4) at a Rayleigh number of 107 

(approximately midrange in Fig. 7) showed that there was a 15 percent 
decrease in the Nusselt number for the cylinders in the vertical po
sition as compared to the horizontal position. These results are similar 
to those obtained for a single cylinder in an infinite atmosphere. Using 
correlations given by McAdams [17] for a single cylinder in the vertical 
and horizontal position, there was a 10 percent decrease in the Nusselt 
number for the cylinder in the vertical position as compared to the 
horizontal position. 
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For all of the heat transfer data the best correlations are in terms 
of the boundary layer length. These are 

NuB = 0.277 RaB
274 Pr0-012 (5) 

and 

Nus = 0.286 Ra^2' (6) 

with average percent deviations of 8.44 and 9.30 and maximum per
cent deviations of 24.85 and 28.63, respectively. Figures 7 and 8 show 
several of these correlations. 

Correlations are available [9,10] for the natural convection heat 
transfer from a single vertical cylinder to an enclosure. These corre
lations are in terms of a modified Rayleigh number defined by 

Ra* = Ra (L/Rt). 

These correlations are 

NuB = 0.578 Ra^239 

(7) 

(8) 

and 
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with average percent deviations of 14.49 and 17.74, respectively. When 
the present vertical cylinder array data were compared to these cor
relations the average percent deviations were 24.76 and 9.31, re
spectively. The boundary layer length used was the total boundary 
layer length for all four cylinders. 

The empirical equations in this study were developed using a hy
pothetical gap width, L, which was 12.84 cm (R0 = 16.54 cm and Rt 

= 3.71 cm). The fluid properties were all evaluated at (T; + T„)/2. The 
foregoing equations fit all of the data for 3.2 X 106 < RaL < 6.9 X 108, 
7.6 X 104 < RaB < 5.2 X 109, and 0.7 < Pr < 31,000. 

Conclusion 
This study has extended the data available for natural convection 

heat transfer in enclosures to more complex inner body geometries. 
Of the configurations studied there was no appreciable effect due to 
rotation of the inner body about its vertical axis. However, a signifi
cant difference was noticed between the vertical and horizontal 
configuration of the set of cylinders. The vertical position showed a 
decrease in the heat transferred relative to the horizontal position. 
This was attributed to a complex interaction between the boundary 
layer length, the flow patterns which resulted from the geometry, and 
the cross-sectional area exposed to the upward flow. These geometric 
effects were noticed to decrease with increasing Prandtl number. A 
logical extension beyond this study will include increasing the number 
of cylinders and varying their spacing, diameter, and length. 
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Natural Confection in Horizontal 
Duct Connecting Two Fluid 
Resertoirs 
The paper reports an experimental study of natural convection between two water reser
voirs connected through a two-dimensional horizontal duct. The flow field was visualized 
and the velocities were measured using the thymol blue pH indicator method. The tem
perature field in the duct region and the heat transfer rate through the duct were also 
measured. It is shown that the duct flow consists of two streams in counterflow, the warm
er stream occupying the upper half of the channel. The two streams are insulated from 
one another by a mid-depth buffer layer. The measurements demonstrate that the heat 
transfer mechanism differs fundamentally from the mechanism envisioned in the Bejan 
and Tien theory [6]. It is also suggested that the basic design of the experimental appara
tus can be used in future studies of stability of shear flows in stratified fluids. 

Introduction 
Contemporary problems related to the energy crisis and the envi

ronment have stimulated the present interest in the fluid mechanics 
and heat transfer characteristics of buoyancy-induced flows in en
closures (cavities). Two comprehensive reviews, one of them very 
recent, document very well this body of research and its engineering 
importance [1, 2]. One class of free convection phenomena, not well-
documented in the literature, is the interaction between two enclo
sures (reservoirs) communicating through relatively smaller openings 
(windows, cracks). These phenomena have important practical ap
plications in a number of fields, such as energy conservation in 
buildings, fire research, inland and coastal hydrodynamics (two-lake 
systems), solar energy storage, nuclear reactor core performance, etc. 
Recent developments in the technology of rotating superconducting 
electric machines indicate that free convection currents induced in 
liquid helium have the capability of shuttling heat away from a 
winding hot spot (normal zone) through small openings present be
tween conductors [3]. Thus, free convection through small openings 
is thought to play a major role in the safety (thermal stability) of ro
tating superconducting windings bathed in liquid helium. 

The literature on natural convection between two fluid reservoirs 
communicating via a small opening is limited. In a two-part paper, 
Brown and Solvason [4, 5] studied the heat exchange through a rec
tangular opening (window) in a partition. Their study included win
dows in vertical and horizontal partitions. More recently, Bejan and 
Tien [6] reported a theory for the heat transfer between two fluid 
reservoirs connected through a horizontal flat duct. This theory is 
expected to hold strictly in the limit Ra H/L -* 0, however, the au
thors recommend a range of finite Ra H/L in which the theory is 
thought to yield acceptable heat transfer results. 

The objective of this paper is to report a fundamental experimental 
study which documents the most basic features of the free convection 
phenomenon. This study has a clear engineering focus motivated by 
the practical applications mentioned in the beginning of this section. 
The only theoretical result available on this phenomenon [6] is 
asymptotically valid; therefore, to "extrapolate" it to a real situation 
can lead to significant errors. For this reason, we decided to design 
an apparatus which simulates a real situation, namely, a common fluid 
(water) and a set of channel dimensions compatible with those of 
commercial, man-made ducts. Our experiment was not designed to 
test the theory of reference [6]. As shown below, our experimental 
results and conclusions are the first of their kind because they are 
made in a parametric domain where nothing is known, analytically 
or experimentally. The present study breaks new ground. 

Experimental Apparatus 
The apparatus constructed for this experiment is shown in Fig. 1. 

The central compartment of the apparatus is the H-shaped cavity 
filled with water. This cavity consists of a horizontal flat duct posi
tioned symmetrically between two identical parallelipipedic reser
voirs. The flat duct is 5.1 cm deep, 30.5 cm long and 25.4 cm wide, 
while each of the lateral reservoirs is 30.5 cm deep, 25.4 cm long and 
25.4 cm wide. The entire structure is built out of plexiglass sheet 0.63 
cm thick. The plexiglass structure is surrounded on all sides by a 
plywood enclosure leaving a 7 cm-wide gap between plexiglass and 
plywood. This gap was filled with glass wool as thermal insulation. 

During experiments, the water cavity was heated in the horizontal 
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Fig. 2 Line of zero velocity In the two-dimensional channel (Ra = 5.43 X
108 )

STATION
NO.2

Fig. 3 Thymol blue visuallzallon of velocity dlstrlbullon across the two
dimensional channel (Ra = 1.26 X 107 )

increasing temperature: the velocity gradient at the top wall of the
channel is greater than at the bottom wall.

We carried out a number of quantitative velocity measurements
based on photographic recordings of the type shown in Fig. 3. The
velocity results are presented in Figs. 4 and 5, showing not only the
variation of velocity profile with longitudinal position (station
number) but also the effect of increasing Rayleigh number, Ra. As in
reference [6], we defined the Rayleigh number based on the duct
depth (H = 5.1 cm) and the maximum temperature difference /::"T
encountered in the duct,

Ra =gfJH3
/::"T. (1)

av
The maximum temperature difference /::"T was measured between
the two "starting corners" where the two branches of the counterflow
enter the duct region. In the present experiments, the temperature
difference /::"T varied between 2 and 10°C. Comparing Figs. 4 and 5
we see that the peak velocities increase by roughly 40 percent as Ra
increases from 5.43 X 106 to 1.93 X 107.

It is worth mentioning that each of the velocity points plotted in
Figs. 4 and 5 are based on measuring the physical length /::"X of an
individual blue streak and the time /::"t required to generate the streak.
Due to the wake which forms directly behind the 0.8 mm-dia cathode,
the local free stream velocity v~ is actually greater than /::"x/ /::"t.
Applying the method originally described by Imberger [10], we
combined the /::"x, /::"t measurement, with a calibration curve deter
mined experimentally for the ratio v~/(/::"x//::"t) as a function of dis
tance behind the cathode. The result of the ensuing trial-and-error
calculation is the free stream velocity v~.

The visualization experiments allow us to make the observation

direction between the heater plate B-B and the cooling water coil A-A
shown in Fig. 1. The heater plate consists of two vertical electric
heaters embedded in a massive aluminum plate with a thickness of
2.5 cm. The heater and the cooling coil are positioned 21 cm away from
the respective openings of the flat duct in order to minimize the effect
of vertical end-walls on the fluid mechanics of the two-dimensional
channel.

Access to the water chamber was provided through seven ports
(numbered 1-7 on Fig. 1) positioned every 7.6 cm along the middle
longitudinal line of the lid. Each access port is a stainless-steel tube
with an inside diameter of 3.2 mm. Through each port we lowered to
predetermined depths temperature and velocity probes discussed in
detail in the next sections. The flow was examined visually through
two lateral windows cut into the insulation in line with the two-di
mensional channel. These windows are not shown in Fig. 1, however,
they are visible in the photographs (Figs. 2, 3).

The experimental procedure consisted of achieving a succession
of steady states fixing the power input to the heater plate. The cooling
coil temperature was fixed by the temperature of the laboratory water
supply which oscillated within ±1°C from day to night. Fortunately,
these temperature fluctuations did not constitute a problem since the
time constant of the apparatus is roughly 5 hr, and the actual re
cording of data required no more than 2 hr. At the heated end, the
temperature fluctuations which could have been caused by changes
in the voltage supply were avoided by inserting a constant-voltage
transformer between the heaters and the building electric power
supply.

Flow Visualization and Velocity Measurements
The flow pattern was made visible using the thymol blue pH indi

cator method originally described by Baker [7]. The same method was
used successfully in a number of thermal convection experiments
[8-10]. The negatively charged electrode which marks the fluid was
introduced verticaly through each of the seven access ports, across
the two-dimensional channel. As anode we used one of the nearest
steel access tubes.

In Fig. 2 we show a panoramic view of the natural counterflow in
duced in the channel by the differential heating of the lateral reser
voirs. We made this photograph possible by placing the cathode in
the center of the channel and leaving it charged at -6V for 5-10 min.
The blue sheet generated by the vertical electrode is swept toward the
cold side (to the left) through the upper half of the channel, and
toward the warm side (to the right) through the lower half of the
channel. In time, the blue gradually disappears as the marked fluid
comes in contact with adjacent (unmarked) regions. For the same
reason, the line of zero velocity survives longest. This line is visible
in Fig. 2. The lighter streaks of irregular shape enclosed by the zero
velocity line are the remains of horizontal streaks disturbed by
buoyant hydrogen bubbles formed on the cathode before the voltage
was turned off and the photograph taken.

The zero velocity line demonstrates that the lateral reservoirs ex
change heat via a horizontal counterflow in which each of the two
branches becomes narrower as the fluid approaches the exit. Conse
quently, in each branch the fluid experiences a slight horizontal ac
celeration as it moves from one end of the channel to the other. This
effect is illustrated also by the sequence of photographs assembled
in Fig. 3, in which we show blue streak patterns generated under access
ports 2-6 after approximately 20 s of cathode activity. Another effect
visible in this sequence of photographs is the decrease in viscosity with

Y = vertical dimension of hot plate swept by
cold fluid

z = dimensionless vertical position, z =
y/H

a = thermal diffusivity
fJ = coefficient of thermal expansion
o= thickness of vertical boundary layer
v = kinematic viscosity
p = density

Ri = Richardson number, equations (2, 3)
T = temperature
/::"T = maximum temperature difference in

the duct region
u = horizontal velocity
W = duct width
x = horizontal position
y = vertical position

_____Nomenclature _

B = parameter, equation (7)
g = gravitational acceleration
H = vertical dimension of duct
k = thermal conductivity
L = horizontal dimension of duct
Nu = Nusselt number, equation (5)
Pr = Prandtl number
Q = heat transfer rate through the duct
Ra = Rayleigh number, equation (1)
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Fig. 4 Velocity distribution across the duct (stations 3-5, Ra = 5.43 X 
108) 

that fluid is drawn horizontally from both reservoirs into the duct. 
This observation contradicts the intuitive drawing which prefaces the 
Bejan and Tien theory for the laminar flow in the duct (see Fig. 1 of 
reference [6]). We summarized our visual observations in the sche
matic drawing shown in the top half of Fig. 2: the fluid contained in 
the upper half of the warm reservoir and in the lower half of the cold 
reservoir does not participate in the exchange which takes place be
tween reservoirs. 

Finally, we note that the velocity profile at station 4 (Figs. 4,5) is 
not purely antisymmetric as would be expected from the temperature 
boundary conditions placed around the vertical longitudinal cross-
section of the apparatus. This effect is explained by the fact that the 
actual experiment is not purely symmetric. The two lateral walls, 
particularly the two windows through which we viewed the flow, al
lowed some heat transfer from the ambient to the channel (Tr00m = 
25-26°C). Consequently, in longitudinal planes near the two lateral 
walls the warm (upper) branch of the counterflow was augmented. 
By mass conservation over the duct cross-section, in the central lon
gitudinal plane (station 4) the lower branch appears to be stronger. 
However, the mass defect between the two branches is considerably 
smaller than the flow in each branch (this can be seen more clearly 
in Fig. 2). The viscosity effect also contributes to the departure from 
a purely antisymmetric profile: from 25 to 30° C the viscosity of water 
decreases by 11 percent. 

Temperature Measurements 
We measured the temperature distribution in the H-shaped cavity 

using a precision thermistor mounted at the lower extremity of a 
rack-and-pinion mechanism with dial indicator. The thermistor probe 
was lowered into the cavity through each of the seven apcess ports. 
The temperature readings are accurate within 0.1°C, while the vertical 
position measured on the dial indicator is accurate within 0.5 mm. 

Figures 6(a-e) show the temperature distribution as a function of 
longitudinal position and Rayleigh number. In particular, Fig. 6(c) 
summarizes the measurements taken through the three most central 
access ports in the duct region. The basic feature of the temperature 
field is the stratification in the vertical direction. This effect is par
ticularly visible in the center portion of the duct (Fig. 6(c)) where the 
upper branch of the counterflow is clearly warmer than the lower 
branch. Figure 6(c) reveals also a weak horizontal temperature gra
dient; for example, the temperature along the upper wall decreases 
in the direction of flow. All these features are visible also in Fig. 7 
where we plotted the pattern of isotherms corresponding to Ra = 2.76 
X 107. 

VELOCITY IMM/SEC) 

Fig. 5 Velocity distribution across the duct (stations 3-5, Ra 
107) 

1.93 X 

The temperature profiles of Fig. 6(c) indicate that the experimental 
apparatus is quite effective in providing adiabatic boundary condi
tions for the duct fluid. The adiabatic wall condition does not seem 
to deteriorate as the Rayleigh number increases. Another important 
feature of the duct temperature profile is that it has three inflexion 
points, hence, the vertical temperature gradient has three minima, 
one at mid-depth and the other two on the adiabatic boundaries. For 
example, the temperature gradient measured at station 4 (case C, Fig. 
6(c)) reaches the minimum value 0.31°C/cm at mid-depth (z = 0.15) 
and 2.38° C/cm and z = 0.85. The temperature gradient at mid-depth 
("CL" in Fig. 6(c)) is comparable with the gradient measured at the 
same depth in the lateral reservoirs. We conclude that the two 
branches of the duct counterflow are only in marginal thermal contact, 
since they interact across a distinct mid-layer serving as buffer. Al
though the velocity measurements obtained using the thymol blue 
technique (Figs. 4, 5) did not yield reliable data for the buffer layer, 
the photographs (Fig. 3) suggest that in the buffer layer the fluid shear 
is less than in the two branches of the counterflow. 

In conclusion, the temperature measurements demonstrate that 
the duct flow departs from the fully-developed counterflow envisioned 

' by Bejan and Tien [6] for the central region. The fully-developed 
counterflow suggested in [6] is of the type found analytically by 
Cormack, et al. [11] and experimentally by Imberger [10] in horizontal 
rectangular enclosures. We attribute this departure to the fact that 
the duct is too tall (Ra is too high) for the two branches to feel each 
other and exchange a substantial amount of heat by vertical diffu
sion. 

The thermal stratification of the two lateral reservoirs is docu
mented in Figs. 6(a, b, d, e). Bach half-reservoir which serves as sink 
for the duct fluid is practically isothermal due to strong thermal 
mixing visible in the upper-left and lower-right corners of Fig. 2. The 
stratification is much stronger in the remaining spaces, namely, in the 
upper half of the hot reservoir and in the lower half of the cold res
ervoir. The hot reservoir measurements show that the apparatus loses 
heat through the upper wall of the warm reservoir. We determined 
the order of magnitude of this heat loss by performing a special ex
periment described in the Heat Transfer section of this article. 

The earlier observation that the fluid is drawn horizontally into the 
duct is now explained by the vertical stratefication of the two reser
voirs. Without stratification, the streamlines would enter the duct 
radially, from all angles (as foreseen in reference [6]). With stratifi
cation, the fluid is drawn from a thin layer situated in the reservoir 
at the same level as the entrance to the duct [12]. This form of "se-
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lective" horizontal withdrawal is also accompanied by backflow in 
adjacent horizontal layers (see reference [13]). The backflow is re
sponsible for the weak cells visible in the upper half of Fig. 2. 

Fig. 7 Pattern of isotherms in the channel region (Ra = 2.76 X 107) 

creases: the solid lines represent the local Richardson number in the 
limit Ra -» 0, H « L. In this limit, the local Richardson number be
comes 

Stability 
The temperature and velocity measurements reported in the pre

ceding sections can be used further to study the stability of the duct 
counterflow. When the stratification is thermal, subject to the 
Boussinesq approximation, the local Richardson number depends 
on the local temperature and velocity gradients, 

Ri; 
Ay 

dti\2 

dy, 

(2) 

According to Mile's criterion [14], "Ri > 1/4 everywhere in the fluid" 
is the sufficient condition for a continuously stratified inviscid flow 
to be stable to small disturbances. 

The dashed lines in Fig. 8 show the local Ri under access port No. 
4 when Ra = 1.93 X 107. We obtained the Ri(z) curve by fitting sev
enth-order polynomials to the corresponding velocity and tempera
ture profiles, and substituting the polynomial expressions into defi
nition (2). The Richardson number is zero at the top and bottom ad-
iabatic walls, and infinite at two levels where the shear is zero. In the 
buffer region Ri reaches a clear minimum, Rimi„ = 6.7 at z s 0.65, one 
order of magnitude above the critical value %. Near the adiabatic walls 
Ri falls below V*; however, in these regions the solid boundaries pro
mote stability [15]. The Richardson number calculations agree with 
the experimental observation that the duct shear flow is stable even 
at the highest Rayleigh number achieved in the apparatus (Ra = 2.76 
X 107). We were unable to increase the Rayleigh number above this 
limit because, while trying to increase the Joule heating in the hot 
plate, the plexiglass-plexiglass epoxy seal failed due to overheating 
(see the stratification in the upper, "stagnant", half of the warm 
reservoir, Figs. 6(d, e). 

Figure 8 shows the dynamics of the Ri(z) distribution as Ra in-

Ri(z) = : P r z 4 - 2 z 3 + z2 

6 / i\2 
(3) 

In Fig. 8, we plotted the theoretical result (3) for water at 25°C (Pr 
= 6.3), showing that the theoretical Ri(z) curve has the same general 
features as the experimental curve corresponding to Ra = 2.76 X 107. 
The differences between the two curves suggest that in the buffer 
region Ri decreases as the Rayleigh number increases. Due to the 
temperature-dependent properties of water, the experimental Rimin 

in the buffer region migrates upward from its asymptotic level z = 0.5. 
The double-inflexion in the experimental Ri(z) curve suggests that 
as Ra increases, a second Rimi„ may develop in the lower half of the 
duct. 

These observations point toward the opportunity of using appa
ratuses similar to the present design (Fig. 1) to systematically inves
tigate the transition to instability in stratified shear flows. Figure 8 
and equation (3) show two ways in which the Richardson number may 
be adjusted by the experimentalist. One way, discussed already, is by 
increasing the Rayleigh number. The other approach consists of de
creasing the Prandtl number: in water, this can be achieved by steadily 
increasing the bulk temperature. It is interesting to note that the 
minimum Ri in the Ra -»• 0 limit is simply 

R^ : l / 2 : ^ P r , 
2 

(4) 

suggesting that in low Prandtl number fluids with Pr < Ve the buffer 
region Ri always falls under the critical V4 value. 

Regarding the use of our apparatus design in stability studies of 
stratified shear flows, it is worth pointing out that an apparatus of 
similar design was employed by Lofquist [16] who achieved density 
stratification by circulating (pumping) a salt water layer under a fresh 
water pool. The advantage of our design would be that the circulation 
and the stratification occur naturally. At the same time, the natural 
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occurrence of circulation and stratification enhances the flow control 
problem; however, as pointed out in the preceding paragraph, in our 
design one could use the Prandtl number to control the approach to 
instability. 

H e a t T r a n s f e r 
The net heat transfer between the two reservoirs via the horizontal 

duct is reported in Fig. 9. The Nusselt number for overall heat transfer 
is defined as 

Nu = -
Q 

h HW(AT/L) 
(5) 

where Q(watts) is the net heat transfer rate, W the duct horizontal 
width (25.4 cm) and AT the maximum duct temperature difference 
used in definition (1). The net heat transfer rate Q is equal to the 
electric power dissipated in the heater plate B-B (Fig. 1) minus a 
correction attributed to heat loss across the top wall of the warm fluid 
reservoir (Figs. 6(d, e)). We measured the size of this correction by 
conducting a separate experiment in which we powered the heater 
plate but did not run water through the cooling coil A-A (Fig. 1). The 
steady state achieved in this manner is the result of the balance be
tween the heater plate heat input and the heat loss to the ambient 
across the 7 cm thick glass wool insulation surrounding the water 
cavity. In the heat loss experiment we were able to simulate top 
wall-ambient temperature differences comparable with the differ
ences encountered during the experiments documented in Figs. 2-7. 
Thus, we obtained an estimate of the water-air heat loss present in 
the duct heat transfer experiments: The heat loss was always under 
28 percent of the heater plate power input, the largest share (28 per
cent) being lost at the highest Rayleigh number studied, Ra = 2.76 
X107 . 

In Fig. 9 we show a comparison between our heat transfer mea
surements and the only theoretical prediction available in the liter
ature. The theory of [6] reports the Nusselt number in implicit form; 

I 

0.5 

Fig. 8 Local Richardson number versus verlicai posilion in the duct, z = y/H 
(station 4) 

10 • 

Bejan a Tien [6j present results 

10 \0' 10 10° 

Fig. 9 Heat transfer results versus the theory of reference [6]. 
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a more useful version of this result is the parametric representa
tion 

Nu = B l + (2 .76)10- 6 B 2 | f l a -

where parameter B is given by 

1 + 0.0024 Ra I—V 
1/2 

(6) 

(7) 

0.0012 Ra —| 

For the present geometry (H/L = 1/6), the Nusselt number given by 
equations (6) and (7) is thought to be approximately valid in the range 
Raff/L < 1.33 X 104 [6]. This range is highlighted in Fig. 9 by the solid 
portion of the theoretical curve. 

Figure 9 shows that the experimental Nu results depart appreciably 
from the Bejan and Tien theory [6], suggesting that the reservoir-
to-reservoir heat transfer mechanism differs from the mechanism 
envisioned theoretically for the Ra —>• 0 limit. In the theory, the 
thermal resistance between the two reservoirs was due to the thermal 
contact in the vertical direction between the two branches of the duct 
counterflow. As demonstrated by Figs. 6(e) and 7, in the present ex
periment the two branches of the counterflow are effectively insulated 
from one another by the mid-depth buffer region. Since the end-
to-end thermal resistance (insulation value) of a counterflow heat 
exchanger varies inversely with the thermal resistance in the 
stream-to-stream direction [18], in the present experiment the 
channel counterflow poses no resistance to heat transfer in the hori
zontal direction despite a finite AT measured between the two 
"starting" corners. The fact that the experimental data follow more 
closely a relationship of the type 

Nil- (Raf) 
1/4 

(8) 

suggests that the resistance to reservoir-to-reservoir heat transfer is 
situated not in the duct but between each of the two vertical end 
planes (A-A, B-B) and their adjacent fluid reservoirs. In the warm 
reservoir heat is being transferred from the hot plate to an almost 
isothermal pool of cold fluid occupying the lower half of the reservoir. 
(See Fig. 6(e); the fluid in the upper half does not leave the warm 
reservoir.) Similarly, in the cold reservoir the cooling coils extract heat 
from the fluid occupying the upper half of the reservoir. 

We can derive a more exact version of relation (8) on the basis of 
dimensional analysis. The net heat exchange between reservoirs can 
be written as 

AT 
•YWk 

5 
(9) 

where Y is the height over which the hot plate is swept by cold fluid, 
while 5 is the thickness of the boundary layer lining the hot plate. Note 
that in our experiment the temperature difference between the two 
starting corners (AT) is practically the same as the AT between each 
vertical end-plate (coil) and the well-mixed pool surrounding it (see, 
for example, the top portion of Fig. 6(a), and the bottom of Fig. 6(e)). 
Gill [17] showed that the boundary layer thickness is of order 

avY YH 

jSAT/ 

Combining expressions (9,10) with definition (5) we find 

(10) 

Nu-
Ljs/4/ 

Hi \. D>D 1/4 

Assuming that Y is equal to the half-height of the hot plate, Y' 
cm, expression (11) becomes 

N u ~ 1 6 . 6 Ra 
1/4 

(11) 

10.9 

(12) 

This order-of-magnitude estimate is in fair agreement with the best 
line of slope xk drawn through the experimental data of Fig. 9 
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N u s 9 . 1 R a - (13) 

In conclusion, the Nusselt number defined in equation (5) obeys 
a proportionality of type (11), in which the missing numerical coef
ficient is of order one. It is important to remember that the actual heat 
transfer rate Q depends only on the size and the position of the hot 
plate relative to the horizontal channel, Y. Unlike in the theory of 
reference [6], the heat transfer rate does not depend on the channel 
dimensions, H and L. The path of heat flow between the two end-
plates can be traced by following the "strong" cell sketched in the 
upper half of Fig. 2. Cold fluid enters from the left, passes through the 
channel and reaches the bottom end of the heated plate (AT). Trav
eling upward along the heater, the stream temperature is raised to AT. 
Later, the warm stream (AT) travels unaffected through the channel 
and reaches the top end of the cooling screen. Descending along the 
cold wall, the stream temperature decreases by AT. 

Further evidence supporting the above argument is contained in 
the velocity measurements reported in Figs. 4 and 5. Gill argued that 
the total mass flux carried by the convective cell generated between 
two vertical walls, A-A and B-B, is also proportional to Ra1/4. In the 
present experiment, the convective cell set in motion by differential 
heating is strangled by the duct. We can then estimate the change in 
mass flux with increasing Ra, by calculating the change in longitudinal 
velocity in the duct region. For example, we find that the peak velocity 
in the lower (cold) branch under station No. 5 increases from 1.62 
mm/s in Fig. 4 to 2.24 mm/s in Fig. 5. This amounts to a 38 percent 
increase in mass flux, which matches the increase exhibited by Ra1/4, 
(1.93 X 107/5.43 X 106)1/4 = 1.37. 

Criterion for Transition from the Theoretical 
Counterflow [6] to the Present Regime. 

The dimensional argument substantiated in the preceding section 
enables us to establish the parametric domain in which the present 
experimental observations can be expected, vis-a-vis the parametric 
domain in which the theory envisioned in reference [6] is valid. We 
demonstrated that the fundamental difference between the two re
gimes (channel counterflows) is that, whereas in the theory the heat 
imparted to the vertical end boundary layer is lost in the horizontal 
duct by vertical diffusion from the warm branch to the cold branch 
of the counterflow, in the present experiment this heat is retained by 
the warm branch. Therefore, the theoretical counterflow [6] is possible 
as long as vertical diffusion in the duct is capable of off-setting the 
convective heat transfer to the end layers (heat transfer in the hori
zontal direction). 

According to the Gill scaling discussed already, the vertical diffusion 
is of order Qy = kLWAT/H while the horizontal convective heat 
transfer is of order Qx = "mcp AT" = pWcp ATaY/8 where 5 is given 
by equation (10). A balance between the two heat flows is achieved 
when Ra1 '4 = L/H (H7Y)3/4. In conclusion, it is necessary that 

Ra < — I— , for the Bejan and Tien theory [6] to be valid (14) 

and 

Ra > I— I—I , for the present regime to be observed. (15) 

In the present experiment, the geometric right-hand side of these 
inequalities is of order 50. Thus, we would have to set AT = 10-5ff 
in order to witness transition to the regime of theory [6]. Or, leaving 
AT, L and Y intact, we would have to use a gap height H = 2.4 
mm. 

There are two important conclusions to be drawn here. First, a 
counterflow of the type visualized in reference [6] does not occur in 
the engineering applications we are most concerned with. Second, the 
range in which the Bejan & Tien theory is valid (Ra <50) is drastically 
narrower than Ra < 1.33 X 104 suggested in reference [6] as the range 
in which "the heat transfer predictions are acceptable." 

Criterion (14,15) explains the disagreement shown in Fig. 9 between 
the Nu-Ra measurements and the theoretical prediction based on 
reference [6]. 

Conclusions 
The experiment described in the preceeding sections demonstrated 

that the flow in the horizontal duct region consists of a two-branch 
countercurrent in which the upper branch is warmer than the lower 
branch. In the parametric domain covered by over experiment, H/L 
= Ve and 5.43 X 106 < Ra < 2.76 X 107 the vertical heat transfer be
tween the two branches is inhibited by a mid-depth buffer region. The 
temperature distribution in the buffer region is similar to the distri
bution found in the adjacent reservoirs. The reservoir fluid is ther
mally stratified; the stratification accounts for reservoir fluid being 
drawn horizontally into the duct region. 

The heat transfer measurements revealed a Nusselt number— 
Rayleigh number dependence of the type found in cavities heated and 
cooled between the vertical walls, Nu ~ Ra1/4. We concluded that in 
our experiment the resistance to heat transfer posed by the duct is 
small compared with the two boundary layer resistances lining the 
heated/cooled walls of the reservoirs. Therefore, the heat transfer 
mechanism is different than the one described by Bejan and Tien [6] 
for the Ra H/L -* 0 limit. The apparatus design employed in this 
experiment proved adequate in the stability study of shear flow in 
stratified fluid. 
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Effective Thermal Conductivity for 
Combined Radiation and Free 
Convection in an Optically Thick 
Heated Fluid Layer 
The effective thermal conductivity for radiative heat transfer within an optically thick 
fluid layer undergoing high Rayleigh number convection is derived. This result is com
bined with available "pure" free-convection heat-transfer correlations to obtain closed-
form analytical descriptions of the gross properties of a radiating fluid layer heated inter
nally or from below. These simple solutions compare favorably with recent work in which 
the governing energy equation incorporating both turbulent heat transport and thermal 
radiation is solved numerically. 

1 I n t r o d u c t i o n 
During a postulated meltdown accident for a fast breeder nuclear 

reactor, a layer of molten fuel and steel debris could form at the bot
tom of the reactor vessel. The heat generated by the radioactive decay 
of fission products is usually sufficient to generate a highly turbulent 
free-convective flow within the molten layer. Knowledge of the 
magnitudes of heat fluxes at the upper and lower boundaries of the 
layer is necessary for predicting the onset of boiling within the melt, 
as well as for bounding the downward rate of penetration through the 
melting structure below the fuel layer. Since the melting point of 
molten ceramic reactor fuel is about 3000 K, heat losses from fuel 
layers probably cannot be accounted for by free convection alone; 
internal thermal radiation should contribute to the total heat flow 
to the boundaries. Accordingly, the problem of combined turbulent 
free convection and internal radiation in a layer of fluid heated in
ternally or from below has been the subject of some recent re
search. 

Anderson [1] considered internal radiation to be a diffusion process 
(Rosseland "optically thick" approximation) and used a constant, 
effective, free-convective diffusivity to model combined radiation and 
free convection in a layer of molten UO2. Cho, et al. [2] used the 
Rosseland diffusion approximation and an eddy convective heat-
transport model advanced by Cheung [3] to study the same problem. 
Anderson's constant-convective-diffusivity model was found to un
derestimate the contribution of internal radiation at high Rayleigh 
numbers. Chawla, et al. [4] recently solved the problem of simulta
neous free convection and radiation in a gray fluid layer. The gov
erning energy equation incorporated an exact integral formulation 
for the radiation flux and, again, Cheung's model for the eddy con
vection. The validity of the optically thick diffusion approximation 
for molten-ceramic-fuel layers was confirmed by this numerical in
vestigation (see Section 7). Cheung and Novas [5] recently carried out 
numerical computations for coupled turbulent-free convection and 
internal radiation in a layer heated from below (Rayleigh-Benard 
problem) using the eddy-diffusivity formulation proposed by 
Cheung. 

Our emphasis here is on developing a simple procedure for esti
mating the combined effects of internal radiation and free convection 
in a fluid layer heated internally and/or from below. In what follows, 
we sidestep many of the numerical complications associated with the 
use of an eddy-diffusivity model for convective heat transport and, 
instead, exploit the free-convection model proposed by Howard [6] 
to obtain closed-form analytical descriptions of the gross properties 
of a heated, optically thick, fluid layer. By suitably combining an ef
fective radiative heat conductivity, suggested by Howard's diffu

sion-layer instability model, with existing empirical correlations ob
tained for free convection alone, one can easily describe effects at
tributable to internal thermal radiation. We will focus our attention 
on two simple, yet realistic, example problems, but the principle and 
method elucidated by these examples indeed carry over to more 
complex situations. 

2 Ef f ec t i ve R a d i a t i v e Conduct iv i ty 
The formulation of combined free convection-radiative heat 

transport is relatively simple when the fluid layer is optically thick. 
Nevertheless, even with this most simple radiation model, the rigorous 
solution for the heat transfer must be obtained by means of numerical 
integration and usually involves a complex two-point boundary value 
problem. It is recognized that an important simplification to this class 
of problems is possible if an appropriate, effective "radiative con
ductivity", kr, which represents both the internal radiation and mo
lecular conduction components to the heat transport, can be identi
fied. The existence of such an effective conductivity is based on the 
fact that, under optically thick conditions, the term representing 
radiation in the governing energy equation is similar to the heat-
conduction term. If kr is known, then it is not necessary to solve the 
governing equation, because every experiment or analysis of free 
convection without thermal radiation may be regarded as supplying 
a solution of the combined problem with the difference that kr re
places the molecular conductivity. 

It would seem that a major drawback associated with the notion 
of an effective conductivity is that it cannot be determined until the 
whole free convection problem of interest is solved.1 Fortunately, a 
means of deriving a priori an effective radiative conductivity generally 
applicable to optically thick, heated fluid layers at high Rayleigh 
numbers is suggested by Howard's diffusion-layer instability model 
of turbulent-free convection [6]. This model and its connection with 
internal thermal radiation are discussed in some detail in the next 
section. 

3 Howard ' s "Sur face R e n e w a l " M o d e l 
We consider the situation illustrated in Fig. 1 in which a horizon

tally infinite layer of fluid is confined between two isothermal surfaces 
and heated from below at a steady rate. This special case of free 
convection exhibits the essential features of the well known Ray-

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 7,1980. 

1 The only exceptional case is when the temperature difference across the 
fluid layer is small compared with the absolute fluid temperature level. The 
radiation term in the energy equation can then be linearized and the expression 
for kr is readily obtained (see below). In several gas-cooled fast-reactor safety 
applications, however, the estimated temperature difference between the 
horizontal boundaries of a molten UO2 layer is too large to justify a linearized 
radiation term. 
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Fig. 1 Schematic of the bottom-heated horizontal fluid layer 

leigh-Benard problem. The layer depth and the temperature differ
ence between the hot and cold surfaces, TH — Tc, are assumed to be 
much larger than those at which convective instability sets in and we 
temporarily ignore internal thermal radiation. Laboratory observa
tions [7] of highly turbulent free convection between two horizontal 
surfaces indicate that the fluid temperature varies only in the 
boundary layers near each surface, as shown in Fig. 1. Over most of 
the fluid layer (or turbulent core) the temperature is approximately 
uniform. Moreover, assuming constant physical properties, the 
temperature profile is approximately symmetric with respect to the 
temperature in the turbulent core, 7V 

Howard suggested that the growth and release of thermal plumes 
from the boundary layers would cause repeated, gross replacement 
of the fluid within the layers with fluid from the well mixed bulk. He 
presumed that molecular conduction and "surface renewal" controls 
heat transfer between the surface and fluid. The boundary (or density) 
layer grows according to the familiar square-root law, 

8 ^ y/irat , (1) 

until its thickness 8 attains some value based on a critical local Ray-
leigh number, 

gj3AT53 

Raj : (2) 

whereupon the fluid in the boundary layer is suddenly removed by 
a departing thermal. (AT = TH — T0 = To - Tc is the temperature 
difference across each boundary layer.) The average heat flux q 
through the surface during the stable period between departing 
thermals is given by 

2kAT 2kAT 
q=-y= = —1—. (3) 

irat 8 

The dimensionless rate of heat transfer through the convection 

layer is characterized by the Nusselt number 

qL 
N u ; 

2feAT' 

Equations (2 - 4) may be combined to obtain 

N u ; 
RaUA) 

Raj 

(4) 

(5) 

Thus, the Nusselt number is equal to the ratio of the depth of the 
convective layer, L, to the thickness of the boundary layer 8. The re
lationship between Nu and Ra given by equation (5) is roughly the 
experimental result obtained by Katsaros, et al. [8]. Moreover, de
tailed measurements of the periodicity of thermal-plume generation 
by Sparrow, et al. [9] lend further support to Howard's model. 

One is therefore left with the conclusion that the problems of tur
bulent-free convection in a fluid layer can be solved by means of the 
transient conduction solutions (1) and (3), valid for a semi-infinite 
stagnant medium. This has important implications with regard to 
readily generalizing existing free-convection heat-transfer correlations 
to include radiating fluid matter. If radiation is considered to be a 
diffusion process, and the radiative flux is approximated accordingly, 
then equations (1) and (3) are still valid, provided that the molecular 
conductivity, k, is replaced by an appropriate (effective) radiative 
conductivity, kr. As suggested by Howard's model, the desired radi
ative conductivity should be obtained once and for all by solving the 
problem of transient simultaneous conduction and radiation in a 
semi-infinite, optically thick (stagnant) medium and reducing the 
result to the same form as equation (3). This is accomplished next. 
As mentioned previously, if the solution to a free-convection problem 
in a fluid layer is obtainable by experiment or analysis, then the so
lution for combined convection and radiation within an optically thick 
fluid layer can be quickly constructed by simply replacing k with 
kr. 

4 R a d i a t i o n and C o n d u c t i o n in a n Opt ica l ly T h i c k 
S l a b and the E f f e c t i v e Conduct iv i ty 

Consistent with our purposes outlined above, we consider the 
temperature profile in a radiating, semi-infinite slab following a step 
change in temperature at the surface of the slab at time t = 0. The slab 
is initially maintained at a uniform temperature To. The energy-
conservation equation, incorporating the Rosseland diffusion ap
proximation, 

dT , d2T d /16(m2 „,, dT' 
pc — =k + -— T 3 — 

dt dx2 dx\ 3/c dx 

together with the boundary and initial conditions 

0, T = Tw; x -» o=, T — T0; t = 0, T = T0) 

(6) 

(7) 

essentially completes the mathematical statement of the problem. 
The coordinate x is measured from the surface of the slab; n is the 

• N o m e n c l a t u r e -
A = dimensionless constant coefficient, 

equation (19) 
c = specific heat 
/ = dimensionless similarity temperature 

variable, equation (8) 
g = acceleration due to gravity 
k = molecular conductivity 
kr = effective thermal conductivity 
K = absorption coefficient 
L = thickness of horizontal fluid layer 
M = dimensionless surface-temperature 

ratio, equation (26) 
1 = dimensionless exponent, equation (19), 

or refractive index in equation (6) 
N = conduction-radiation parameter defined 

by equation (11) 
Nu = Nusselt number defined by equation 

(4) 
q = average heat flux through boundary 

Q = volumetric heat generation rate 

g/3ATL3 

Ra , or defined by equations (2) 
VOL 

or (29) 
t = time 

T = temperature 

Tc = temperature at the upper (cold) sur
face 

TH = temperature at the lower (hot) sur
face 

To = temperature within the turbulent core 
of the fluid layer 

Tw = surface temperature in stagnant slab 

problem (Section 4) 
x = distance measured from surface of ra

diating slab (Section 4) 

a = thermal diffusivity 
/3 = isobaric coefficient of thermal expan

sion 
8 = thermal boundary layer thickness 

AT = surface-to-fluid core temperature dif
ference 

r) = dimensionless similarity coordinate, 
equation (8) 

8 = dimensionless turbulent core tempera
ture, equation (25) 

v = kinematic viscosity 
p = density 
a = Stefan-Boltzmann constant 
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refractive index, <r, the Stefan-Boltzmann constant, K, the absorption 
coefficient, p, the density, and c, the heat capacity. 

While there are no known closed-form solutions to equation (6) 
Yang [10] pointed out that equations of this class may be transformed 
into ordinary differential equations by invoking the usual similarity 
transformation 

77 = ; •f(v). 
2 V a t 

Equation (6) and the above conditions (7) then become 

/ 4 \ 4/2 

1 + — f s \f" + — (/')2 + 2r,f •• 
\ 3N N 

0 

and 

/(0) = 1.0,/(<*>) 
. T o 

(8) 

(9) 

(10) 

The quantity N in equation (9) is the conduction-radiation param
eter 

N = -
kn 

An2aTw 
(11) 

The average heat flux at the surface, q, can now be expressed in the 
form 

\ 3N| 
-/'(0). (12) 

Moreover, by comparing equation (12) with equation (3), we note that 
the effective radiative conductivity is given by 

K 

2 
1 + 

4 \ f (0) 

3JVJ T0/Tw - 1 
(13) 

Heinisch and Viskanta [11] have obtained numerical solutions to 
equations (9) and (10) for the case where the initial temperature of 
the slab is just twice the surface temperature (To = 2TW). In the 
present analysis, numerical solutions have been obtained over a broad 
range of the absolute-temperature ratio parameter To/Tw and the 
conduction-radiation parameter N, Using these solutions, we have 
constructed the plot shown in Fig. 2, with the ordinate being (1 + 
4/3A01/2/'(0). The application of equation (13) and this plot is suffi
cient to compute the radiative conductivity ratio kr/k in terms of 
To/Tw and N. However, for obtaining closed-form approximate re
sults for combined radiation and free-convection problems, it is 
necessary to have an explicit expression that relates kr/k to the pa
rameters of the problem. Thus, one is tempted to inquire if a simple 
formula can be found that correlates all the results displayed in Fig. 
2. 

It is useful to observe that if equation (6) is forced into the linear 
form 

d T , d2T 16<m2T3 d 2 T 
pc — = k — - -I , 

dt dx2 3K bx2 (14) 

by postulating a mean value for T3, namely T3, then we can readily 
obtain the following rough approximation to f'(0) 

(T0/Tw - 1) 
/ ' (0) • 

vV 
l + • 

V 3JVV 

f3 

T 3 
(15) 

3iV 

This formula by itself is of limited value since, except for the trivial 
case (T,„ — Tn)ITw « 1.0 where T3 can be taken approximately equal 
to Tw

 3, we have no knowledge of T3. However, assuming that equation 
(15) provides the correct relationship between /'(0) and the radiation 
parameter N, we need only test several plausible choices for the mean 
temperature in terms of TJTW until we find the function T3(T0/TW) 
that, together with equation (15), adequately correlates the numerical 
data in Fig. 2. The following choice was reasonably successful in the 
parameter range of interest here 
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Fig. 2 Values of the dlmensionless heat flux at the surface of an optically 
thick radiating slab. (Note the change in scale for TaIT„ > 1.) 
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Fig. 3 Correlation for r3: — equation (16); m r numerical data 

y3 
— = 0.345[(1 + 7 V T J U + ro2/T„,2)]°-82 (16) 

It is seen from Fig. 3 that, by using equations (15) and (16), we can 
predict all the numerical results displayed in Fig. 2 for /'(0) with a 
root-mean-square relative error of less than 10 percent. Upon inserting 
equations (15) and (16) into equation (13) we obtain the desired ex
pression for kr. 

\ = 1 + ^ [(1 + T o / T J U + T0
2ITwi)Y>™ (17) 

k N 

The use of this result for combined free convection and internal 
radiation in a horizontal fluid layer at high temperature is best 
demonstrated by treating some representative cases of practical in
terest. What follows compares the results of the present method with 
available numerical solutions based on an eddy-diffusivity concept 

116 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.5 

a) 0.3 

0.1 

- T l I MUM 1 I IJ jJ iJLJ-
-cr 

O NUMERICAL 

PRESENT METHOD 

i i i m i l l i l l I I I M in i I I I I l l l l 

10" 
N 

Fig. 4 Effect of internal radiation and wall temperature ratio parameter on 
the turbulent core temperature within a bottom-heated fluid layer; comparison 
of present results and numerical solutions 
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Fig. 5 Effect of Internal radiation and wall temperature ratio parameter on 
the normalized energy transfer through a bottom-heated fluid layer (Ra = 
1010); comparison of present results and numerical solutions 

to gain some indication of its accuracy. 

5 R a d i a t i o n and F r e e Convec t ion in a R a y l e i g h -
B e n a r d L a y e r 

The physical problem treated first was described above in the 
discussion of Howard's model; namely, we consider a horizontally 
infinite layer of fluid confined between two isothermal surfaces and 
heated from below at a steady rate (see Fig. 1). The layer depth and 
the temperature difference between the hot and cold surfaces, TH — 
Tc, are assumed to be much larger than those at which convective 
instability sets in, and the fluid is assumed to radiate heat according 
to the Rosseland diffusion approximation. 

In the absence of internal radiation, assuming constant physical 
properties, the temperature profile is approximately symmetric with 
respect to the temperature in the turbulent core, To, as shown in Fig. 
1. Clearly, without radiation, 

TH - T0 = T0 - Tc = V2 (TH - Tc). (18) 

The turbulent convection experiments of Chu and Goldstein [7] in 
the geometry of interest have led to the relation 

Nu = A • Ra"; A = 0.183, n = 0.278, (19) 

where Nu and Ra are based on the total temperature drop TH — Tc-
However, for our purposes we will define the characteristic temper
ature difference in equation (19) to be that across each boundary layer. 
This is permissible, since the two boundary layers are almost isolated 
from one another by the turbulent fluid core; that is, there is very little 
interaction between the lower and upper boundary layers. Thus, 
solving equation (19) for the heat flux across each boundary layer, we 
have 

q = 2A-(TH-T0) 

for the lower boundary and 

q = 2A - (T0 - Tc) 
LJ 

2pcg{$(TH - T0)L' 

vk 

2pcgP(T0 - TC)L-

vk 

(20) 

(21) 

for the upper boundary. Of course, under steady-state conditions, the 
heat fluxes given by (20) and (21) are identical. 

According to the foregoing arguments, equations (20) and (21) are 
readily generalized to include the effect of internal radiation by simply 
setting k = kr as given by equation (17). Carrying out this substitution 
immediately gives 

q = 2A - (TH - To) 
XJ 

1 + — [(1 + TOITH) (1 + To2/T„2)]0-82 

JV 

2gP(TH - T0)L' 
(22) 

for the heat flux across the lower boundary and 

COLD UPPER WALL 

HEAT GENERATING 
TURBULENT CORE 

INSULATED LOWER WALL 

Fig. 6 Schematic of the Internally heated fluid layer 

g = 2 A - ( T o - T c ) 

0.46 T f f
3
 r 1 + ^ T ^ ~ T K1 + T o / T c ) (1 + T0

2/Tc2)]0-82 

N lc 

2g/3(To - Tc)m 
(23) 

for the upper boundary. In the above expressions, the radiation pa
rameter N is based on the temperature at the lower boundary. 

With thermal radiation as well as turbulent convection in the fluid 
layer, the mean core temperature, T0, departs from its arithmetic 
mean value and shifts towards the base temperature as the total 
temperature drop TH — Tc is increased. This is due to the fact that 
the radiation flux is a strong function of the temperature levels within 
the boundary layers. An implicit relationship between the mean core 
temperature and the parameters JV, TC/TH is obtained by setting 
equation (22) equal to equation (23) 

Journal of Heat Transfer FEBRUARY 1981, VOL. 103 / 117 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1(2 - MB) [1 + (1 - M0)2]]0-82 - (1 - M) 3 

N = 0A6-

1 - M(l+n)/(l-n) 
1 + -

l-Mff 

l-M 
1 + o 

/ l - 0\(l+n)/(l-n) 
(24) 

where we have introduced the abbreviations 

. TH - To 

'TH-TC 

(dimensionless core temperature) (25) 

and 

M = (dimensionless surface-temperature ratio). (26) 

Equation (22) or (23) immediately gives the overall Nusselt number 
in terms of 6 and N 

N u ; 
qL 

k(TH-Tc) 

( 0 46 V-"-
= /U20)1 +"Ra" 1 + — | ( 2 - M 0 ) [ 1 - M 1 - M 0 ) 2 ] ) 0 - 8 2 . (27) 

Typical results, showing the effects of radiation on core temperature 
and free-convective heat transfer, are displayed in Figs. 4 and 5. These 
analytic and graphical results clearly reveal the conditions under 
which departures from pure free-convection behavior are to be ex
pected for any combination of radiation parameter and surface-
temperature ratio. Also shown in Figs. 4 and 5 is a comparison of our 
predictions with the results of a numerical model in which the full 
energy-conservation equation is solved, with turbulent-free convection 
represented by an eddy-diffusivity relation [5]. The results for 6 are 
especially encouraging, with equation (24) approximating the nu
merical results to better than 5.0 percent. Also, we conclude from Fig. 

5 that equation (27) represents a satisfactory solution for the rate of 
energy transfer across the fluid layer. The Nusselt number corre
sponding to equation (27) falls below the numerical-solution values 
by less than 20 percent over the range of values of iV investigated. As 
anticipated, radiation has the effects of reducing 6 below 0.5 while 
increasing Nu. It is interesting to note that the mean core temperature 
is not a function of the Rayleigh number (see equation (24)). 

6 R a d i a t i o n a n d F r e e C o n v e c t i o n in a n i n t e r n a l l y 
H e a t e d L a y e r 

Unlike Rayleigh-Benard convection, turbulent-free convection in 
an internally heated layer between isothermal, equal-temperature 
surfaces occurs only in the upper part of the layer. In the lower part 
of the layer, the temperature profile is such that the fluid is stable to 
the buoyant force and is therefore relatively stagnant. For this reason, 
the internally heated layer is usually modeled by dividing the layer 
into two sublayers. The plane of maximum temperature serves as the 
dividing line. The lower sublayer is essentially a molecular heat-dif
fusion layer and is of little interest here. The upper sublayer is 
bounded below by an adiabatic horizontal surface (at the dividing 
plane) and is capped by an isothermal surface, as illustrated in Fig. 
6. As in the Rayleigh-Benard layer, experimental observations of the 
temperature distributions in internally heated layers (with an adia
batic lower boundary) undergoing turbulent-free convection, show 
that temperature variations are confined to a thin boundary layer 
adjacent to the upper surface. Of course, there is no boundary layer 
at the lower surface, since there is no heat flux through this surface. 
In this case, the temperature of the turbulent core, To, is equal to the 
maximum temperature at the insulated lower boundary. 

Once again, to predict the heat flow from such an internally heated 
layer with internal radiation, we exploit an available empirical cor
relation for the mean Nusselt number in the absence of radiation. In 
particular, we adopt the correlation recommended by Kulacki and 
Emara [12] for free-convection heat transfer alone: 

where, for internally heated fluids, the Rayleigh number is defined 
by 

.gPQL* 
Ra = 

2kav 
(29) 

In the above expression, Q is the volumetric energy source in W/cm3. 
If we make the substitution k = kr using equation (17), we can readily 
write an expression for Nu that includes coupled free convection and 
radiation in a volumetrically heated layer. 

Nu = 0.2015Ra0226 

1 + ^ •([! + To/Tc][l + T0
2/Tc2])0-82 (30) 

Equation (30) is represented graphically in Fig. 7, where it is compared 
with the numerical results of Chawla, et al. [4] which are based on the 
eddy-diffusivity heat flow function derived by Cheung [3]. We see that 
equation (30) provides a simple yet accurate correlation for the effects 
of internal radiation in the heat-generating fluid layer. 

It is worthwhile to note that thermal effects qualitatively similar 
to those discussed in this section should also result in exothermically 
reacting fluid medium having the same parallel-plate geometry il
lustrated in Fig. 6. Indeed, if the kinetic-chemical heat-release laws 
governing such reactions are expressible in terms of local fluid tem
perature only, a theoretical framework identical to that pursued here 
would predict the effects of internal radiation within a reacting 
fluid. 

7 T h e r m a l B o u n d a r y Layer T h i c k n e s s , Opt i ca l ly 
T h i c k A p p r o x i m a t i o n and Howard ' s Mode l 

Using equation (5) for the (approximate) relation between the 
thermal-layer thickness and the Nusselt number and replacing the 
molecular conductivity k by the radiative conductivity kr, we find for 
the Rayleigh-Benard problem that 

bH 26 

Nu 
l + ^ ( [ 2 -

N 

8c 

L 

2(1 - 8) 

Nu 
1 + °^(1_M)s 

N 

M8] [1 + (1 - M0)2])0-82 

1 - Mff 

(3D 

1 + -
•M 

1 + fi^ri * 
are the thicknesses of the lower and upper boundary layers, respec
tively. Introducing the turbulent core temperature and the Nusselt 
number through equations (24) and (27), the boundary layer thick
nesses are immediately obtained from equations (31) and (32). Plots 
of 5C versus N and bu versus N with M as a parameter are shown in 
Fig. 8. The Rayleigh number is fixed at Ra = 1010 in both cases. It is 
quite clear that the effect of radiation is to increase the boundary layer 
thickness. 

A limitation imposed on the present model is the Rosseland dif
fusion approximation for internal thermal radiation. For the radiation 
diffusion approximation to apply, we require that the optical thickness 
of the thermal boundary layer be larger than unity,2 namely K8 > 1. 
Suppose the optical thickness of the fluid layer is KL =* 103. This value, 
which is typical of those encountered in nuclear safety applications, 
has been widely employed in previous investigations [1, 2, 4]. Note 
from Fig. 8 that both the upper and lower boundary layer thickness 
are equal to or larger than approximately 0.01L under all radiation 

Nu = 0.2015Ra0-228, (28) 
2 It can be shown that even KS = 1 may be considered a fairly large optical 

thickness. 
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Fig. 7 Effect of Rayleigh number and turbulent core temperature ratio on 
the normalized energy transfer from an internally heated layer at a fixed value 
of the radiation parameter W 
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Fig. 8 Predicted upper and lower boundary-layer thicknesses for a bottom 
heated fluid layer; effects of radiation parameter N and wall temperature ratio 
parameter M 

conditions; that is, 8 > 0.01L or, equivalently, 

8K = - -(KL)> 10.0 (33) 

Indeed, for the practically important case KL m 103, the boundary 
layers are optically thick. 

At first glance, the two basic models used in this study, namely 
Rosseland diffusion and Howard's turbulence (or surface renewal) 
model, seem to contradict each other. This is because the radiation 
diffusion approximation is valid in the low Rayleigh number range 
where the thermal boundary layer is sufficiently thick, whereas the 
surface renewal concept works only in the high Rayleigh number range 
where the thermal boundary layer is sufficiently thin. However, there 
is a common range of validity in which both models apply. It is the 

existence of such a common region that constitutes the foundation 
of this study. 

It is interesting to estimate the Rayleigh number range over which 
both Rosseland diffusion and intense turbulence coexist. To accom
plish this, we again assume the optical thickness of the fluid layer to 
be KL at 103. Thus, from the left-hand equality (33) and the condition 
K8 > 1, the radiation diffusion model is valid provided 8/L > 10~3. On 
the other hand, the surface renewal model is valid only if the thermal 
boundary layer is thin. Measurements of both the free-convective heat 
transport and the thermal boundary-layer thickness within heated 
liquid layers [7,8,13,14] indicate that Howard's model is physically 
sound for, say 8/L < 0.05. The corresponding Rayleigh number range 
for the Rayleigh-Benard problem is determined from equations (27, 
31) and (32). For radiation parameter N = 0.4 and surface-tempera
ture ratio M = 0.1, we find that the radiation diffusion model and 
Howard's surface renewal model simultaneously apply in the Rayleigh 
number range 0.5 X 107-2.8 X 1013. At higher values of N and M the 
range of applicability is even wider. A similar estimate can be made 
for fluid layers subject to internal volumetric heat generation. For the 
conditions given in Fig. 7 with T0/Tc = 3.0, the Rayleigh number 
range over which both models apply is calculated using equation (30) 
and equation (5) with k replaced by kr and is found to be 1010-1016. 
Even at a Rayleigh number as high as Ra ^ 1016, the optical thickness 
of the thermal boundary layer is K8 =* 1.0, which can still be considered 
large. 

It is recognized that the models exploited here will not apply if 
thermal radiation strongly affects the turbulence intensity within the 
thermal boundary layer. The present work along with all the existing 
(numerical) solutions [1, 2, 4, 5] for the class of fluid layer problems 
under consideration are based on the assumption that the turbulent 
motion within the boundary layer is unaffected by radiation. Town-
send [15] described the influence of radiation on turbulent fluctua
tions in free turbulent flow far from solid boundaries. He found that 
radiative heat transfer decreases or "damps" the turbulence intensity. 
A similar treatment of the interaction of the temperature field and 
the turbulent motion in the boundary layer is quite difficult due to 
the inhomogeneity of the fluid motion, but would constitute a useful 
next step. However, we expect that as long as the Rayleigh number 
is sufficiently large or, equivalently, the boundary layer is sufficiently 
thin, the physical picture of the turbulent heat transport across the 
boundary layer in the immediate neighborhood of the surface will not 
change very much in the presence of optically thick radiation; heat 
transport will still be controlled by diffusion in a marginally stable 
diffusion layer. Of course, as mentioned above, we cannot make the 
Rayleigh number arbitrarily large as that would violate the Rosseland 
approximation. 

Finally, we should discuss the assumption of constant (mean) 
thermo-physical and radiative properties. While necessary to achieve 
the simple general results presented, there is no question that 
breakdown of this assumption or the Boussinesq approximation itself 
will limit the accuracy with which the results can be applied in par
ticular cases. This additional complication is frequently accompanied 
by a large temperature difference TH - Tc- It would be of interest 
to determine whether an effective thermal conductivity based on 
combined conduction and radiation in a stagnant material with 
variable physical properties, together with an appropriate pure 
free-convection heat-transfer correlation for the specific fluid material 
of interest, will correctly model combined radiation and free con
vection in this situation. However, further calculations of kr would 
appear to be premature in the absence of more extensive free-con
vection data and exact variable property analysis of simultaneous free 
convection and radiation in a fluid layer. 

Conclusions 
An effective conductivity for radiative heat transfer within a fluid 

layer undergoing high Rayleigh number convection has been deter
mined and exploited here to the point of yielding useful qualitative 
and quantitative heat-transfer information with the recourse to only 
pure free-convection solutions or empirical correlations. It is recog
nized that the key underlying assumption of optically thick radiating 
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matter will not apply in specific free convection situations; however, 
the present method may still prove valuable in providing reasonable 
heat transfer bounds, insight as to trends, and guidance to future 
high-temperature experimental developments in this area. 
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Nongray Particulate Radiation in an 
Isothermal Cylindrical Medium 
The radial radiative heat flux and its divergence are determined both exactly and ap
proximately for homogeneous suspensions of small particles. Scattering is assumed to be 
small compared to absorption and the absorption coefficient is taken to be inversely pro
portional to wavelength. The exact solution is reduced to an infinite series of single inte
grals. The optically thin and the next higher order behavior appear in closed form as the 
first two terms in the series. Two approximate solutions are also developed. One is in good 
agreement with the exact solution while the other is not. Finally, a closed form approxi
mate relation is derived for the dimensionless heat flux at the surface. This expression, 
which also gives the emissivity or absorptivity of the medium, is in excellent agreement 
with the exact result. 

Introduct ion 
The equations describing the radiative heat transfer in an infinitely 

long cylindrical medium are well known [1,2]. Using the radial radi
ative flux formulation of [2], several investigators have studied radi
ative transfer in nongray gaseous media having discrete absorption 
bands [3-10]. In [3-5] radiation was taken to be the only mode of 
energy transfer while in [6-10] combined modes were considered. 
Nongray continuum radiation due to particulates is also an important 
contributor to the total radiative transfer in combustion systems [11]. 
Depending upon the fuel and how it is burned, the importance of this 
particulate radiation will range from insignificant to dominant. Under 
all conditions, however, the radiation from the combined gas/par-
ticulate mixture may be analyzed in a way such that one term in the 
solution represents particulate radiation in the absence of any gaseous 
participation [12]. Hence, the nongray problem concerning a purely 
particulate medium is of fundamental importance to combined gas/ 
particulate analyses. In [13] the problem of particulate radiation in 
a parallel plate geometry was considered. Approximate closed form 
solutions for nonhomogeneous media were developed there. The 
purpose of the present work is to develop exact and approximate re
sults for isothermal particle suspensions in the more common com
bustion geometry—cylindrical. 

E x a c t S o l u t i o n 
The particles produced in the combustion of hydrocarbon fuels are 

often small enough such that the radiative interchange may be pre
dicted using the small particle limit of Mie's equations. In this limit 
and for these absorbing particles, scattering is negligible and the 
spectral absorption coefficient is reasonably approximated by [13]. 

k = C/X (1) 

where C = cofv, in which /„ is the local volume fraction of particles and 
Co is a constant whose value lies between 3 and 7. In the following 
analysis, the particle concentration will be assumed spatially uniform 
and hence C will be constant. 

The spectral, radial radiative heat flux is given in [2] for the general 
case wherein the temperature and absorption coefficient are allowed 
to vary with radius across the cylindrical medium. Using this spectral 
result, the total radial flux for a homogeneous nongray particulate 
medium having an absorption coefficient given by equation (1) may 
be written as 

<?"(r) = 4 C"lbx(T„) C^cosyDdxJdydX 
Jo Jo 

- 4 ("° Ibx(Tw) C* cosyDs(x2)dydX 
Jo Jo 

1 Presently, graduate student at M.I.T. 
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OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
February 29,1980. 

J* ™ n 7r/2 r* ro 

\-xhx(Te) cos 7 D2(x3) 
0 *-/0 \) r sinT dr' 

cos 7 

dr' 
+ 4C ("° X-1 hx(Tg) P * cos 7 f D2(xd 

JO Jo Jr s h n COS 7 ' 

dr 

-dydX (2) 

-dydX 

J """ /* iv2 /% ro „ 
X - V o x W cos 7 D2(xb) dydX 

0 JO Jr COS 7 

where h\(.T) is Planck's blackbody intensity function and 

xi = Cr0\-
l\[l - O/r0)2 sin2 7 ] 1 / 2 + (r/r0) cos 7) 

X2 = CroA-1([l - (r/>0)2 sin2 7 ] 1 / 2 - (r/r0) cos 7) 

x 3 = Cr'X-Mfl - (r/r')2 sin2 7] 1 / 2 + (r/r') cos 7) (3) 

Xi = Cr 'X-M-t l - (r/r ')2 sin2 y]1'2 + (r/r') cos 7! 

xs = -Xi 
and 

Dn(x) = r V n _ 1 ( l -M 2)~ 1 / 2exp (-x/rfdfi (4) 

The terms in equation (2) represent the following heat flows. The first 
term is the contribution to the radially outward flux at point P (see 
Fig. 1) from wall emission at points like B. The exponential quantity 
in this term (which appears through Da) is the transmittance for the 
line of sight from B to P. Wall emission from points like A which gets 
transmitted to point P is accounted for in the second term. Since this 
flow is radially inward, the term is negative. The third and fourth 
terms are contributions to the radially outward flux resulting from 
local particulate emission which is transmitted to point P. The third 

Fig. 1 Fundamental pathlengths for the cylindrical geometry 
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term accounts for such emission along the path from B to C while the 
fourth term accounts for the section from C to P. The last term in the 
equation is the local particulate emission along the line of sight AP 
which is transmitted to point P. It is radially inward and hence it is 
negative. 

The complexity of the integrals does not allow an exact closed form 
solution to be obtained. Nevertheless, several of the integrals may be 
performed analytically. This greatly reduces the numerical compu
tation burden and, in addition, allows the optically thin and the next 
higher order behavior to be achieved in closed form—appearing as 
the first two terms in the infinite series solution. The transformations 
leading to the closed form integrations are presented in detail in [14]; 
a brief outline is given below. 

Initially, either the r' or the X integration may be performed. It was 
found, however, that performing the X integration first allows the 
problem to be pursued further on an analytical basis. (The direction 
into which the solution proceeds when the r' integration is completed 
first can be seen from the modified gray result given in the next sec
tion.) Letting x = 1/X, the spectral integrals in equation (2) may be 
cast into the form of Riemann's zeta function f(i/, )i/fi). The key in 
being able to go beyond this first integration and achieve further 
analytical reduction lies in then expressing the zeta function as an 
infinite series [15]. 

n-lfi-H* 
f(,,M//?)=:£- f V ~ V d * T(p) Jo 1-e-"* 

= t (n/P + n)-* 
re=0 

Using this series representation and defining 

. r Cr0Tw Cr0Tg 

k= — \ p = ; q = -
ro C2 C2 

(1 + n)lr 
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k cos 7 + V l — ft2 sin2 7 

(1 + n)h 

—ft cos 7 + V l — A2 sin2 7 
(1 + n)lq 
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ft cos 7 + y/(r'lro)2 — ft2 sin2 7 

ft- () + n)'q 

ft cos7 — yr'/ro)2 — k2sin27 
in which T will be either p or q, the expression for the radial heat flux 
may be written as 

q"(r) = 48C1C2-
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n = 0 •/<> 
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In the second term in the above equation the three integrations with 
respect to r' are the same. Each may be completed in closed form by 
first expressing dr'/cos 7 ' in terms of the /8/(/' = 3,4,5). (It should be 
noted from Fig. 1 that r sin 7 = r' sin 7 ' and hence cos 7 ' = [1 — (rlr'y 
sin2 7]1'2.) Then the integrations with respect to /J. may be completed 
in closed form by first using trigonometric substitutions followed by 
partial fraction expansions. The Gm(/3) functions which appear in the 
final result below are generated at this point. 

The remaining integrations with respect to 7 may be completed 
analytically only when the integrands do not contain the Gm(/3) 
functions. Those integrations which can be completed are then able 
to be summed exactly through the definition of the Riemann zeta 
function, equation (5). The resulting expression for the radial radiative 
heat flux then becomes 

where 

q"(k) = F(q, k)(rTg
4 - F(p, k)oTw 

F(T, ft) = cikr - c2kfi(k2)T2 + R(T, k) 

(10) 

(11) 

in which 

a. f i l «•> 1 /»ir/2 4 ft-

n(T,k)=^-Z17i-Ti f £ (-l)m+1(4--»0 
7T5 „ = o ( l + n)4 Jy = Om . 1 

„• fG»(j8lr) Om(for) cos 7 dy (12) 

and 

h(k2) =- C'2 cos2 7 (1 - k2 sin2 7 ) ^ 7 
1T Jy = 0 

(13) 

where 

Closed form expressions for the Gm(/3) functions are given in the 
Appendix. The function fi(k2) may be identified as the hyper-
geometric function iFi(—1/2,1/2; 2; ft2). It decreases monotonically 
from /i(0) = 1.00 to /i(l) = 0.85 and has very little curvature. The 
constants ci and C2 have the values c\ = 6!f(5)/ir4 = 7.664 and C2 = 
15-5!f(6)Ar3 = 59.06. 

The solution is therefore seen to be governed by the single function 
F(T, ft). That this should be the case is certainly not obvious upon 
inspection of equation (8). It is, however, clear on physical grounds 
since for an isothermal medium the radial flux must vanish at all radii 
when the wall and medium temperatures are equal. The fact that F 
7^ F(p, q, ft) is a consequence of the spectral absorption coefficient 
being independent of temperature (see equation (1)). As a result, the 
mean absorption coefficient of the medium for wall emission is in
dependent of the temperature of the medium. Hence the second term 
in equation (10), which is the part of the emitted wall energy which 
is absorbed by the medium in the region 0 < r' < r, is a function of the 
wall temperature but not the medium temperature. Similarly, the 
radially outward emission of energy by the medium (the first term 
in equation (10)) is independent of the wall temperature. The fact that 
p a Tw and q <* Tg results from the mean absorption and emission 
coefficients being linearly dependent upon the temperature of the 
sources of radiation [13]. This linearity in temperature stems solely 

•Nomenclature-
in,bn = coefficients in Dn(x) approxima

tion 
C = particle concentration parameter 
Ci, C2 = first and second radiation con

stants 

Dn(x) = J * ' M»-i(l - M2)-1 '2 exp (-x/n)dn 

F, Fg, Fd = fundamental functions for the 
exact, gray, and approximate Dn (x) results, 
respectively 

2F1 = Gauss' hypergeometric function 
/i(ft2) = jFi (-1/2,1/2; 2; ft2) 
/2(ft

2) = 2^1(1/2, 3/2; 3; ft2) 
hxw = Wien's distribution 
ft = dimensionless radius 
km = mean absorption or emission coeffi

cient 
ftx = spectral absorption coefficient 
p, q = optical depths for wall and medium 

emission 
<?"> Qg", Id" = exact, gray and approximate 

Dn(x) heat fluxes, respectively 
Q = remainder function in div F 
R = remainder function in F 
r, ro local radius and tube radius 
T, Tg, Tw = general, medium and wall tem

peratures, respectively 
f = Riemann's zeta function 
X = wavelength 
a = Stefan-Boltzmann constant 
T = optical depth 
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from the X - 1 variation of the spectral absorption coefficient since the 
radiative properties of the particles themselves are assumed inde
pendent of temperature. 

The Function F(r,k). The first two terms in equation (11) ap
pear to be the beginning of a series expansion for F(T, k) in terms of 
the optical depth r. This observation may be verified by determining 
the optically thin behavior of the function R(T, k). Substituting 
equations (36) and (39) of the Appendix into equation (12) and taking 
the limit as r -*• 0, it can be shown that 

R(T, k) = gi(fe)r3 In (1 /T) - g2(fe)T3 T « 1 (14) 

where the functions gi(k) andg2(k) are of the order of magnitude 10. 
Hence for T « 1 it is seen that R(T, k) is negligible compared to the 
first two terms in F(T, k), thereby demonstrating that these terms are 
a valid expansion for F(T, k) in the optically thin region. From nu
merical computations it was found that F(T, k) may be determined 
to within one percent by using simply the first term in equation (11) 
when r S 10~3 and by using only the first two terms when T ;S 10~2. 
The third term, R(T, k), initially achieves importance at small r as 
a result of the first two becoming of the same magnitude but of op
posite sign. At large r the first term is much smaller than either of the 
last two. However, all three terms are important since the second and 
third terms are of equal magnitude but opposite sign. Therefore, when 
T £ 10 - 2 all terms must be retained in the computation. 

Figure 2 presents the function F(r, k). A simple physical inter
pretation of its behavior is obtained by noting that when Tw = OK 
the radial flux is only a consequence of medium emission: q"(k) = F(q, 
k)aTe

4. Under optically thin conditions, energy emitted within the 
cylinder 0 < r' < r escapes from it without being absorbed. Similarly, 
energy emitted within the surrounding annulus r < r' < ro passes 
through the cylinder region without being absorbed. The net radially 
outward flux at r is then simply equal to the total energy emitted 
within the cylindrical region (proportional to its volume) divided by 
the surface area of the region: q"(r) = A(VIA)kpaTg

i, in which kp is 
the Planck mean emission coefficient. For media composed of small 
particles whose spectral absorption characteristics are given by 
equation (1), it was shown in [13] that kp = 3.83 CTg/d. Hence in the 
optically thin limit, F(T, k) = 7.67 k. This result is also predicted by 
equation (11). The linear proportionality with respect to both T and 
k in this limit may be seen in Fig. 2. 

Deviation from linearity occurs for T > 10~3. This is a result of two 
physical effects. First, of the energy emitted within the cylinder region 
some is absorbed internally and therefore not all escapes. Hence, the 
radial flux due to this emission increases at a slower rate with optical 

depth than in the optically thin region. Secondly, radiation from the 
surrounding annular region no longer passes completely through the 
cylinder region but experiences progressively greater absorption in 
it as the optical depth increases. This, then, contributes an inward 
radial flux—directly reducing the net outward flux. At the surface 
of the medium (r = ro) where there is no inward flux for Tw = 0, the 
net flux simply increases with optical depth (at an ever diminishing 
rate of increase) until blackbody emission is asymptotically achieved. 
However, at points internal to the medium (r < ro), the ever increasing 
inward flux (due to increasing absorption in the cylinder region of the 
increasing emission from the annular region) counterbalances the 
outward emitted flux. The tradeoff causes a maximum in net radial 
flux to be achieved. As the optical depth is increased, the annular 
emission approaches blackbody radiation at temperature Tg and all 
of it is absorbed within the cylinder region. The energy emitted within 
the cylinder region also becomes blackbody at Tg and it is absorbed 
within the annulus. As a result, the net flux, and hence F(T, k), go to 
zero. 

The Function div F(r, k). When determining the temperature 
and concentration distributions in combustion systems, a first law 
analysis requires a specification of the divergence of the radiative heat 
flux. Although the present analysis applies strictly to homogeneous 
systems (where specification of the flux divergence is clearly unnec
essary) the results can nevertheless serve as a first approximation to 
the radiative transfer in nonhomogeneous systems. Such an approx
imation is particularly useful when the radiative transfer represents 
only one part of a complex combustion analysis. 

The divergence of the radial heat flux is defined by the single 
function div.F(T, k). This function may be determined by differen
tiating equation (11) and using the relationship given in equation (40) 
of the Appendix. The result is 

ro d i v F = 2c l T - c2[2/i(A2) - (k2/A)h{k2)\r2 + Q(T, k) (15) 

where 

3-5' » 1 fir/2 4 
Q(r,k) = ^ E — i — f L (-1)™" 

7T5 n = o ( l + n)4 Jy=0 m = i 

W . 6 1 ffGm(/Jlr) Gm(M 
X (4 - m) 

(1 + n)2 
v(l/p)[mGm+1(Pu) - (m + 2)Gm(/3lr)] 

(1+n)2 K p ) K + i ( W ~(m + 2)Gm(j82T)] cos 7 dy (16) 
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Flg. 2 The single function which determines the radial flux. Also the di-
menslonless flux when T„ = 0 

v(x) = 2x[(l + x)'1 - (l - k2)/2] (17) 

(18) 

The function /2(fe
2) is the hypergeometric function 2Fi (1/2, 3/2; 3; 

k2). It increases monotonically from f2(0) = 1.00 to /2(1) = 1.70 and 
has significant upward curvature. 

In the optically thin limit the function Q(r,k) has the same form 
as R(T, k), with the corresponding gi(k) functions being of order 100. 
In this limit, Q(T, k) is therefore negligible compared to the first two 
terms in equation (15). From numerical computation it was found that 
r0 div F may be determined to within one percent by using only the 
first term in equation (15) when T £ 10~3 and by using only the first 
two terms when T ;S 10~2. This behavior is similar to that of the 
function F(T, k) itself. 

Figure 3 presents the function ro div F(r, k). As with F(T, k) a 
physical interpretation is facilitated by noting that the function is 
exactly the flux divergence resulting from medium emission only, i.e., 
Tw = 0 K. In the optically thin limit, there is no self-absorption and 
all of the energy emitted by a dr element must escape radially. Hence, 
this emission per unit area (which is directly proportional to optical 
depth) exactly defines the div q". Although the energy emitted by each 
dr element is not the same, the emission per unit area is identical. 
Hence, in the optically thin limit ro div F must be independent of 
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radius and directly proportional to optical depth. These trends are 
seen in Fig. 3 and are predicted by the first term in equation (15). As 
the optical depth increases, the photon mean free path decreases, and 
the center of the cylinder becomes the first region unable to see the 
0 K environment surrounding the medium. It is therefore the first 
region which sees an essentially isothermal environment at the tem
perature Tg. Under these circumstances both q" and div q" will de
crease in the central region of the cylinder as the optical depth in
creases. The central region itself will expand with increasing optical 
depth. Hence, with the surface flux increasing monotonically with 
optical depth while the flux within the medium is approaching zero 
at ever larger radii, the div q" will become larger within an ever nar
rowing annular region. As the optical depth approaches infinity the 
central region expands to the surface and the div q" approaches zero 
everywhere internal to the cylinder. At the surface, however, the div 
q" approaches infinity as a result of the step change in flux across the 
interface. 

q"(r): E x a c t and A p p r o x i m a t e So lu t ions 
The Exact Solution. When either the wall or the medium is cold, 

equation (11) and Fig. 2 give the dimensionless flux exactly. That is, 
for Tw = 0or Tg = 0,F(T, k) = q"(k)/(<7Tg

i- oTJ). However, when 
the wall and medium emissions are both important, equation (10) 
must be used and the optical depths for both emission and absorption 
by the medium (q and p respectively) enter the solution. Equivalently, 
since p/q = Tw/Te one may consider the parameters q and Tw/Tg as 
defining the solution at a given radius. It should also be noted that 
if p and q are interchanged (equivalent to interchanging Tw and Tg) 
the same value is obtained for the dimensionless flux. Expressions 
for the heat flux in the optically thin limit may be written by appro
priately using the one and two term expressions for F{T, k) discussed 
in the previous section. For example, when both p and q are less than 
10~3 (equivalently q ;S 1 0 - 3 and Tw/Tg 5 1.0) the dimensionless flux 
is accurately given by 
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Fig. 3 The single function which determines the flux divergence. Also the 
dimensionless flux divergence when T„ = 0 

q"(r) 

°TS*- °TW 

Cl 
1 - (TJTg)S 

.1 - (TJTg)\ 
kq (19) 

The function of the temperature ratio in brackets above increases 
monotonically with Tw/Tg. It has the values of 1.0 and 1.25 for 
(TwITg) = 0, 1.0 respectively; and it approximately equals (TJTg) 
for large arguments. 

The dimensionless heat flux has been computed exactly from 
equation (10) in the following parameter ranges: 10~5 < ? < 103 and 
0.0 < (TJTg) < 10.0. When plotted, the results for a fixed temper, 
ature ratio always appear similar to Fig. 2 (the dimensionless flux for 
Tw/Tg = 0). The essential difference is that the curve for a given ra
dius shifts toward smaller values of q as Tw/Tg is increased. Plots of 
the dimensionless flux at various temperature ratios will not been 
presented. Rather, the results for q = 0.1, 1.0, 10.0 are presented in 
Table 1. The peaks of the curves lie in or near this range of q when 
(TJTg) < 10. 

The Gray Approximation. By performing the geometric inte
grations in equation (2) first, a spectral or gray solution results. The 
r' integrations may be completed for a medium in which the absorp
tion coefficient is spatially uniform by using the substitution y = 
[(r'/r)2 — sin2 y\112 along with its implication dr'/cos y' = rdy. Finally, 
letting x = sin y and combining the wall emission terms into a single 
term and the medium emission terms into a single term, the radial 
heat flux becomes 

where 
gx'(fe) = ^ ( r x , k)E„ATe) - Fe(rx> k)Ebx(Tw) (20) 

FgiTl, k) •i r1 r1 

IT Jx=oJV=0 (1 - n2)1'2 

exp - ^ ( V T • k2X2 - ky/l-x2) 

— exp 
T x , 

- — Wl-kV + kVT^) dfidx (21) 

and TX = fexro. The above spectral result will also be the solution for 
the total radiative interchange if the medium is gray and if an ap
propriate mean absorption coefficient can be defined. 

As shown in [13] the Planck and Rosseland mean coefficients cor
responding to k\ = C/X have the same form: 

•• BCT/C2 (22) 

where B equals 3.83 for the Planck coefficient and 4.00 for the 
Rosseland. (The value of 3.60 given in [13] for the Rosseland coeffi
cient is in error.) For use over the full range of optical depths it is 
reasonable to assume a mean value of 3.91. Also, it is noted that since 
the coefficient km is linearly proportional to temperature, the mean 
emission coefficient (characterized by Tg) will be different from the 
mean absorption coefficient (characterized by Tw). If this difference 
is not accounted for, the gray solution will be independent of TwITg. 
Since this contradicts the nature of the exact solution, the gray result 
should be modified as follows 

qg"(r) = Fg(Tg, k)aTg* - Fs(rw, k)aTJ (23) 

T a b l e 1 T h e d imens ion les s hea t f lux q"/a(Tg
i — T w

4 ) as c o m p u t e d e x a c t l y and by t w o a p p r o x i m a t e m e t h o d s 

k 

0.2 

0.6 

1.0 

TJTe = 0.0 

0.08241 

0.09152 

0.08523 

0.258 
0.284 
0.265 

0.474 
0.514 
0.481 

q =0 .1 
1.04 

0.0918 
0.1028 
0.0954 

0.290 
0.322 
0.300 

0.548 
0.596 
0.558 

10.0 

0.0388 
0.0180 
0.0320 

0.174 
0.123 
0.157 

0.961 
0.989 
0.972 

0.0 

0.0357 
0.0144 
0.0320 

0.166 
0.111 
0.158 

0.963 
0.992 
0.972 

q = 1.0 
1.0 

2.30E-2 
4.37E-3 
1.88E-2 

0.121 
0.066 
0.109 

0.980 
0.996 
0.985 

10.0 

1.79E-4 
-1.80E-6 

4.74E-5 

1.61E-3 
-1.22E-5 

6.24E-4 

1.000 
1.000 
1.000 

0.0 

1.83E-4 
3.27E-15 
5.06E-5 

1.63E-3 
2.24E-8 
6.40E-4 

1.000 
1.000 
1.000 

q = 10.0 
1.0 

5.55E-5 
-7.65E-14 

5.39E-6 

5.45E-4 
-9.62E-8 

4.97E-4 

1.000 
1.000 
1.000 

10.0 

1.85E-7 
-3.27E-9 

2.40E-9 

1.96E-6 
-2.24E-12 

5.82E-8 

1.000 
1.000 
1.000 

1 Exact solution 
2 Modified gray solution 

3 Solution using Dn(x) = ane~b"x and Wien's distribution (corrected) 
4 Values obtained by interpolation between 0.9 and 1.1 results 
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where 

Tg = BCr0Tg/C2 = 3.91 q (24) 

Tw = BCr0TJC2=3mP (25) 

In Table 1, values of the heat flux predicted by the above approx
imate expression are compared with those computed from the exact 
solution. The modified gray result predicts the general trend with 
fJTg but it is somewhat inaccurate. It was found to be in good 
agreement (5 5 percent error) only when q S 0.01 and (Tw/Tg) ;S 10. 
Additionally, it predicts negative results (which violate the second 
law) at large optical depths when Tw/Tg > 0. (After careful study of 
such results we are convinced that the negative values stem from the 
modified gray approximation and not from computational inac
curacies.) A better approximation is clearly desireable. 

Approximate Geometric Integration. The second approximate 
solution investigated here accounts exactly for the nongray properties 
of the particles and instead performs the geometric integrations in 
an approximate way. The functions Dn (x) appearing in equation (2) 
are approximated as Dn(x) =* ane~b"x after the manner of [3, 4]. In 
addition, Wien's distribution, It>\w — 2Ci\~b exp (-C2/XT), is used 
to approximate the Planck function. Introducing these approxima
tions, the spectral integrals acquire the same form as they had in [13]. 
This, however, is to be expected since the geometric functions of the 
cylindrical geometry, Dn(x), are being approximated here in the same 
way as the geometric functions of the planar geometry, En(x), were 
approximated in [13]. Performing these spectral integrations followed 
by the r' integrations, the following approximate result is obtained 
for the radial heat flux 

qd"(k) = ~ ^ [Pdirgd, k)T„* - (asb2/a2)Fd(Twd, k)Tu*\ (26) 
O2C2 

where 

Fd(r, k)= f" j[l + T ( V 1 - k2 sin2 7 - k cos 7 ) ] - " 

- [1 + T ( V 1 - f e 2 s i n 2 7 + k cos 7)]~ 4 | cos 7 dy (27) 

and 

Tgd = b2Cr0Tg/C2 = b2q (28) 

rwd = b3Cr0TJC2 = b3p (29) 

The coefficients in the Dn(x) approximation are taken to be [4]: 

a2 = 3-?r2/32 a3 = TT/4 

fc2 = 37r/8 6 3 = 3TT/8 (30) 

As a consequence, (0362/^2) = 1.0, (8Cia23!/62C|) = 0.924 a. Then, 
normalizing equation (26) by dividing it by the difference between 
the hemispherical emissive powers computed from Wien's distribution 
(Ebw = 0.924 0T4), it is seen that the 0.924 coefficient cancels. This 
automatically corrects for the inherent underprediction of flux em
bodied in the use of Wien's function. The result is 

q"(k) __ qd"(k) 

cTg4 - ffTw* ~ 0.924(oT,?
4 - oTw*) 

FA-rgMTg^ -Fd(Twd,k)TJ 

At the surface of the medium (k = 1) the dimensionless flux may 
be determined in closed form. It is straightforward to show using a 
table of integrals [15] that 

F d ( r , l ) = l +
 3 + 2 0 T 2 - 8 - 4

± ^ ^ G l ( 2 T ) (32) 
6 ( 1 _ 4 T 2 ) 3 ( 1 - 4 T 2 ) 3 

where the upper signs are to be used for 2T > 1 and the lower signs for 
2T < 1. When 2T = 1, Fd(0.5, 1) = 0.124. The function Gi(/3) is given 
by equation (36) in the Appendix. It should be noted that the emis-
sivity and absorptivity of the nongray cylindrical medium are given, 
respectively, by 

t = Fd(Tgd,l) (33) 

and 

a = Fd(Twd,l) (34) 

The numerical computations in Table 1 show that this approximate 
solution is quite accurate. The largest errors occur when q or p is large 
(i.e., when q or {Tw/Tg) is large). This, however, is to be expected since 
the coefficients in the approximations to the Dn{x) were obtained by 
requiring accurate representations at short pathlengths [4]. The error 
introduced by using Wien's distribution is nearly the same for all 
pathlengths and is much less than the error introduced by the Dn(x) 
approximation at large pathlengths. The simple closed form solution 
for the heat flux at the surface given by equation (32) is remarkably 
accurate over the full range of optical depths. 

Conc lus ions 
Exact and approximate solutions have been developed for the radial 

radiative heat flux in a nongray cylindrical medium. In the exact so
lution, several of the integrals which originally appear in the formu
lation have been completed in closed form. The final result appears 
as an infinite series of integrals in which the first two terms (the op
tically thin and the next higher order term) are known in closed form. 
Upper limits on the optical depth have been established below which 
either the first term or the first two terms in the series will accurately 
represent the radial heat flux. Similar considerations were also given 
to the determination of the flux divergence. 

In addition, two different approximate solutions have been derived. 
The first approximates the spectral integrations by assuming that the 
absorption coefficient is independent of wavelength, i.e., that the 
medium is gray. The gray result is then modified to allow the mean 
absorption coefficient to be different from the mean emission coef
ficient. Nevertheless, good agreement with the exact result is only 
achieved at small optical depths. 

The second approximate solution performs the geometric inte
gration in an approximate way and uses Wien's distribution instead 
of Planck's in the spectral integrations. The values of the radial heat 
flux predicted by this result are in good agreement with the exact 
solution over a much wider range than those of the modified gray re
sult. In addition, a simple closed form expression for the heat flux at 
the surface is obtained. This expression, which is also the emissivity 
or absorptivity of the medium, accurately predicts the exact result 
over the full range of optical pathlengths. 
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APPENDIX 
The Gm(/3) functions are defined by: 

J»ir/2 
(1 + Pcos a)-mda 

a=0 
(35) 

It is clear from the above equation that G0(P) = T / 2 . Using a table of 
integrals [15] it can be shown that 

Gi(|S) • 

t an - i [(1 - /J2)i/2/(l + j3)], /32 < 1 

1 + ff-Hff2 - l)1'2 (36) 

3 2 > 1 
.1 + fi - (/32 - l )1 '2] ' 

with Gi(l) = 1. For m > 1, the Gm(/3) functions may be expressed in 
terms of Gi(j3) through the recurrence relation derived below. From 

[15] it is seen that the integral defining Gm(fi) may be written as 

X TT/2 

(1 + P cos a)~mda 

= - ; T T T ; ^ P 1 - ^ - 1 ) f*Z(l + 0cosa)-^-»da 
(m - 1)(1 - p2) I Jo 

X x/2 
(1 + /? cos a)"*"1-1 ' cos a da (37) 

The last term in this equation may be written in terms of Gm(/3) 
functions by noting that 

(1 + j8 cos a ) - 1 cos a = [1 - ( 1 + ]8 cos a) _ 1 ] /0 (38) 

Substituting the above into equation (37), combining terms and using 
equation (35), the following relationship is obtained 

G»(/8) = 
1 

(m - 1)(1 - /?2) 
W + (m - 2)Gm_2(|8) 

- (2m - 3)Gm_!(/?)] m > 2 (39) 

For m > 0, the Gm(/3) functions decrease monotonically to zero as/3 
increases. When /3 = 0, Gm(0) = ir/2 for all m; and when m < n,Gm($) 
> G„(J8). 

In developing the result for div F(T, k), derivatives of the Gm(/3) 
functions are required. These derivatives may be expressed in terms 
of the functions themselves. By taking the derivative of equation (35) 
and then introducing equation (38), it follows that 

dGm(P)/dfi = [Gm+1(/3) - Gm(fi)]mlfi 

Hence the appearance of Gm+i(|3) in equation (16). 

(40) 
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Anisotropic Two-Dimensional 
Scattering- Comparison of 
Experiment with Theory 
Anisotropic scattering from a semi-infinite medium exposed to a laser beam is studied. 
The situation is two-dimensional and cylindrical because the laser beam is incident nor
mal to the purely scattering media. The back scattered radiation in the normal direction 
is predicted and measured as a function of the distance from the beam. The latex particles 
of uniform size with diameters ranging from 0.03 up to 1.011 n are used as scattering cen
ters in a water solution. The influence of anisotropic scattering shifts the maximum of the 
radial distribution of the scattered intensity to larger optical radii as the particle size in
creases. For large optical thicknesses, the asymmetry factor is used as a correlation coeffi
cient to reduce the anisotropic results to those of isotropic scattering. 

Introduction 
This study is motivated by a desire to obtain a better understanding 

of two-dimensional, multiple scattering. Results of this study should 
be of interest to investigators in the fields of astrophysics, biology, 
chemistry, laser interaction, metallurgy, meteorology, remote sensing, 
and visibility. Particular applications involve the interaction of a laser 
beam with a scattering medium, i.e., the decrease in useful penetration 
range of radiation in underwater surveying, communications and 
navigation, information loss in atmosphere studies, and determination 
of the industrial dust composition and removal of the hazardous 
components. In each of these examples, the laser radiation is dispersed 
laterally, as well as longitudinally. Consequently, these problems are 
at least two-dimensional. Furthermore, these situations are compli
cated because the scattering is anisotropic. 

Most of the radiative transfer studies involving multiple scattering 
assume the radiation transfer to be one-dimensional. A comprehensive 
review of multi-dimensional scattering radiative transfer literature 
was presented by Crosbie and Linsenbardt [1]. It shows that very few 
studies have considered two-dimensional radiative transfer with 
anisotropic scattering. 

Previous Theoretical Studies. Chin and Churchill [2] used a 
six-flux radiative model to numerically calculate the radiation from 
a line source located at the center of an anisotropically scattering 
medium. The top surface was assumed to be partially reflective and 
the bottom surface was completely absorptive. They presented results 
for the flux at the upper boundary as a function of distance from the 
source to show the effects of forward, side, and back scattering phase 
functions. 

Dolin [3] solved for the radiation intensity in an anisotropic scat
tering medium subjected to a narrow beam of incident intensity. He 
obtained solutions for the small angle approximation and for the 
diffusion approximation. Bravo-Zhivotowsky, et al. [4] also used the 
small angle approximation to solve for the radiative flux in an aniso
tropically scattering medium. 

The Monte Carlo technique was used by Stockham and Love [5] 
to calculate the radiative emission from isothermal finite cylindrical 
media with anisotropic scattering. 

Crosbie and Dougherty [6] used Ambarzumian's method to obtain 
exact results for the source function, flux and intensity at the 
boundary of a two-dimensional, isotropically scattering, semi-infinite 
cylindrical medium. The incident radiation was collimated and nor-

Contributed by The Heat Transfer Division for publication in the JOURNAL 
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mal to the surface and had a Gaussian spatial distribution. Single and 
double scattering approximations were also developed [7]. 

Previous Experimental Studies. The only experimental two-
dimensional multiple scattering studies that appear in the literature 
are those of Look, et al. [8] and the Russian work of Ivanov and 
Sherbaf [9-11]. The Russian experiments used milk, or rosin, in dis
tilled water to create the scattering medium. Thus, the size distri
bution of scattering particles and the extinction coefficient were very 
hard to characterize. Their experiments involved measuring the radial 
dispersion of a cylindrical light beam as it propagated through a given 
thickness of the scattering medium. The work of Look, et al. [8] pre
sented the radial distribution of the radiation leaving a semi-infinite 
medium exposed to a small diameter laser beam. White latex paint 
was mixed into distilled water to create the scattering medium. The 
scattering properties of the paint were very hard to characterize. 

The only experimental multiple scattering studies in the literature, 
which use well characterized scattering particles involve one-di
mensional radiation transfer in a planar geometry. Several of these 
studies are listed in Table 1. The listing is intended to indicate the 
type of studies performed in the past and it is not meant to be ex
haustive. The table contains the reference, the composition of the 
scattering medium (scattering medium), the property that was 
measured (property measured), the range of properties of the scat
tering medium (character of medium), and the specific parameters 
that were investigated (parameters investigated). 

All of the experiments involve scattering in a liquid or solid medium 
contained in a rectangular or cylindrical container with radiation 
incident on one side, usually the upper surface. Atkins [12] used in
jection molded solid plastic disks about 4 cm in diameter and 1 mm 
thick for his scattering medium. When TO was small his experiment 
became two-dimensional, because radiation was scattered out the 
edges of the disks. The scattering media used by Hottel, et al. [14-17] 
was contained between two, 5 cm square glass plates. The separation 
distance between the inner glass surfaces was varied from 0.5 mm to 
5 mm. 

The experiments listed in Table 1 were all carried out using visible 
radiation. A mercury or tungsten source was used in all the cases, 
except those of references [18] and [19] where an HeNe laser was used. 
The incident radiation was normal to the surface, except for three 
cases, where it was 24 deg [19], 35 deg [20], and variable over a range 
of angles from 0 to 36 deg [23] from the normal. The size parameter 
was usually changed by changing the size of the scattering particles 
rather than changing the wavelength of the radiation or the index of 
refraction of the medium. In most cases uniform latex spheres in 
distilled water were used to create the scattering medium; however, 
TiC"2 [21] and teflon [19] particles were also used. The measurements 
were bidirectional in character. The range of particle size parameters 
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T a b l e 1 E x p e r i m e n t a l s tud ies of o n e - d i m e n s i o n a l , mul t ip l e s c a t t e r i n g 

Year Reference Scattering Medium Property Measured 
Parameters 

Character of Medium Investigated 

1965 Atkins [12] 

1968 Sarofim, et al. [14] 

1970 Hottel, et al. [13,16] 

1971 Sarofim, et al. [17] 

1971 Hottel, et al. [13,15] 

1972 Querfield, et al. [23] 

1972 Margolis, et al. [24] 

1972 Granatstein, et al. [19] 

1974 Howard and Novotny [21] 

1975 Leader, et al. [18, 20] 

polydispersed rutile titanium-
dioxide spheres and dye in 
plastic disks 

uniform polyvinyl toluene 
spheres painted on a glass 
slide 

uniform polystyrene latex 
spheres in distilled water 

uniform polystyrene latex 
spheres in distilled water 

uniform polystyrene latex 
spheres in distilled water 

uniform polystyrene latex 
spheres in distilled water 

uniform polystyrene latex 
spheres in distilled water 

polydispersed teflon spheres 
in distilled water 

polydispersed, nonspherical 
titanium-dioxide particles 
in glycerol 

uniform polystyrene latex 
spheres in distilled water 

transmission 
and reflection 

bidirectional 
transmission 

bidirectional 
transmission and 
reflection 

bidirectional 
transmission and 
reflection 

bidirectional 
transmission and 
reflection 

bidirectional 
transmission 

reflection in 
normal direction 

reflection at 
0 = 24 deg for 
0in = 24 deg 

bidirectional 
reflection 

reflection at 
8 = 20 deg for 
0in = 35 deg 

x m 1.54 
n = 1.87 

9.56 < x < 25.16 
1.56 < n < 1.61 

0.815 <x <5.12 
n = 1.19; 1.20 
0.25 < T 0 < 3000 
x = 1.90; 2.38 
n = 1.20 
0.20 < TO < 2.0 
0.764 < x < 3.05 
1.14 < n < 1.20 
0.01 < TO < 3211 
x = 1.875; 2.348 
n = 1.194 
0.05 < TO < 1.2 
x = 1.09; 11.03 
n = 1.194 
0.264 < x < 2.64 
n = 1.89 + i .0002 

x =* 1.75; 2.33 
n = 1.90; 2.03 

x = 0.54 
n = 1.194 

T o , Ci> 

S,P*,x 

8, p*, x, 
TO 

8, X,T0, 
01 

8, X, To 

e,p*,x, 
TO 

X, To, 01 

01 

8, T0 

01 

was from 0.26 to 25, so that the scattering varied from Rayleigh to Mie. 
Consequently, the scattering was anisotropic. The experiments cover 
a wide range of optical depths; however, most of the data were re
ported for 0.1 < TO < 10. It can safely be assumed that multiple scat
tering occured in these studies because TO was greater than 0.1. 

The results of each experimental study compared favorably to 
theory. In some cases a slight adjustment of an experimental pa
rameter was used to improve the agreement. The results of Atkins [12] 
compare well with theory [22]; however, the dye absorption coefficient 
and the magnitude, but not the shape of the scattering phase function, 
were adjusted to improve the comparison. Other studies adjusted the 
scattering particle diameter by 3 to 6 percent [13-17, 24] as well as 
introducing a small absorption for the latex particles [24] to more 
accurately fit the experimental data. 

Objective of the Current Investigation. This paper presents 

results of a coordinated experimental and theoretical study of two-
dimensional multiple scattering radiative transfer. The physical sit
uation involves a collimated radiation source of finite cross sectional 
area (laser) directed into a scattering medium. The laser beam enters 
the scattering medium normal to the upper surface. As the laser beam 
propagates through the medium, photons are scattered out of the 
beam causing the beam to disperse. Thus, the problem is two-di
mensional, because the laser radiation depends on the distance along 
the beam and the radial coordinate, which is perpendicular to the 
direction of beam propagation. 

In this paper, we examine the radiation scattered out of the top of 
the medium in the normal direction as a function of radial distance 
from the incident laser beam. Multiple scattering events occur during 
the process. A photon, originally in the laser beam, must be scattered 
out of the beam with a radial component and then scattered in the 

^ N o m e n c l a t u r e . 
c = scattering cross section divided by the 

scattering particle volume 
Caca = scattering cross section 
d = scattering particle diameter 
/ = fraction of energy that is scattered for

ward 
g = asymmetry factor 
G = universal function 
INITT) = theoretically predicted intensity 

leaving the medium normal to the surface, 

^exp = experimentally measured intensity 
leaving the medium normal to the sur
face 

/; = see equation (1) 
/ = intensity 
Io(x) = zeroth order modified Bessel function 

of the first kind 
JQ(X) = zeroth order Bessel function of the 

first kind 
n = relative index of refraction (real) of the 

scattering particle 
nw = index of refraction of the water, 1.33 
N — particle number density 

p* = polarization (see Table 1) 
P(6) = scattering phase function 
Pi = incident power on the medium, Iiirro2 

R(P) = reflection function (see equation 
(8)) 

r = radial distance from center of incident 
(laser) beam 

/-o = effective radius of incident (laser) 
beam 

i?o = inside radius of the barrel 
V = voltage reading of the detector 
z = distance into the media (normal to sur

face) 
x = size parameter, nw 7rd/Xo 
p1 = spatial frequency 
8(x) = Dirac delta function, i.e., fa

bf(x)5(x 

- x0)dx = f(x0) where a < xo < b 
7) = particle volume concentration 
G = angle between the incident and scattered 

ray. 
0 = polar angle, used to specify the direction 

of the intensity, measured between the 
intensity and the normal to the /• — </> 

plane 
0 = effective acceptance angle of detector 

system acceptance cone 
K = absorption coefficient of the medium 
Xo = wavelength of the laser, 0.6328 (im 
H = cos 0 
a — scattering coefficient = q c — N Csca 

TO = optical depth, (a + K)L 
rr = radial optical coordinate, (a + K.)r 
Tro = effective optical radius of incident 

(laser) beam, (a + «)ro 
<l> = azimuthal angle, used to specify the di

rection of the intensity, measured between 
the projection of the intensity on the r — ̂  
plane and the r-axis 

*if = azimuthal angle, used to specify the lo
cation of a point in the medium, measured 
around the z-axis 

(ii = single scattering albedo 

Superscripts 

+ = quantity incident on medium 
— = quantity leaving medium 
* = effective isotropic scattering quantity 
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vertical direction so that it returns to the top of the scattering medium. 
The photons, which exit the medium perpendicular to the surface, 
are detected. 

The direction a photon is deflected after a scattering event has 
taken place depends on the scattering phase function. This paper 
presents results for well characterized scattering particles which 
scatter anisotropically. This is in contrast to the results presented in 
reference [8], which were for paint. The composition and size of the 
particles in the paint were difficult to characterize. 

T h e o r y 
Basic Assumptions. The theoretical development is based on the 

following assumptions: (1) steady state, (2) coherent scattering, (3) 
negligible interference and polarization effects, (4) homogeneous 
medium, (5) no emission, (6) refractive index of unity, and (7) a 
two-dimensional semi-infinite medium. The assumption of refractive 
index of unity is questionable; however, it significantly reduces the 
numerical complexity of the analysis. In addition, this assumption 
is somewhat justified by the one-dimensional analysis of Giovanelli 
[25] in which the intensity reflected by a semi-infinite scattering 
medium exposed to collimated radiation was calculated. For pure 
scattering, the intensity reflected normal to the surface is only weakly 
dependent on refractive index. The validity of extending this con
clusion to the two-dimensional geometry must await further inves
tigation. 

Incident Radiation. In general, the incident intensity is a func
tion of direction (;u,0) and location (r,ty), and the problem is three-
dimensional in character. However in this investigation, the incident 
intensity is assumed to be collimated and normal to the surface of the 
medium [5(n — 1)5(0)] and is assumed to be independent of M*. Spe
cifically, for a laser beam the radial variation is Gaussian [26], and the 
incident intensity is given by 

where 

I+(Tr,»,<l>) = IiS(n - l)5(0)exp(-T r
2/T 

= IMp - l)5(0)exp(-r2 /ro
2) 

Tro = (NCsca + K)r0 

T> = (NCsca + n)r 

(1) 

(2a) 

(2b) 

and N is the number density of scattering particles, Csca is the scat
tering cross section, K is the absorption coefficient of the medium, and 
/'o is the effective beam radius. The Dirac delta function product, b(ix 
— 1)8(0), restricts the incident radiation to the normal direction. For 
this intensity distribution, the incident radiative flux is Jo 2" J V 1 + 

(Tr,n,<l>)ndiidil> = U exp(—r2/ro2). Thus, the magnitude of the incident 
flux at the center of the beam is equal to /;. The azimuthally sym-

r 

r 

r 
: 

r 
-

r 

2 
__L 

TT|iriT| l"T1|IMI| 

1.0 

2.0 

2.5 

3.0 " ^ 

!>*// 

5.0,10.0,20.0 

1 l l l l l l l 1 1 l l l l l l l 1 1 1 

""1 r 

hill L 

T T | I I I I | 

1 1 l l l l l l t 

" H " 

1 1 l l l l l l 

- T T T 

i I I 

rrmr—i-n 

3 .0 -<7* 
3.5 S / 
4 . 0 - / / 
5 . 0 ^ 

10.0,20.0 

Mil l 1 1 1 

l » " | 

1.0 
... 
1 

1 

1 

1 

I0"7 

Fig. 1 Theoretical variation in the reflected intensity from a semi-infinite 
medium 

metric (independent of ty) beam allows the source function to be ex
pressed in terms of z and r. 

Scattering Phase Function. When the wavelength of the ra
diation is large compared to the particle diameter, Fraunhofer dif
fraction around the particles gives rise to a sharp forward peak in the 
scattering phase function. The narrow diffraction spike can be ap
proximated by a Dirac delta function and remaining angular variation 
can be approximated with an isotropic component [6]. 

P(6) = 2/5(1 - cos 6) + (1 - / ) , (3) 

where / is the fraction which is scattered in the forward direction and 
0 is the angle between the incident and scattered ray. Putting this 
phase function into the equation of transfer, yields the modified 
transfer equation, 

' 1- sin 8 cos <j> • 
drz* drr* 

sin 8 sin 0 dl 

Tr* d0 
+ I = S, 

where 

and 

co* c 
— j Idfi , 
4-7T i /4ir 4-7T «^4ir 

= ( 1 - C O / ) T Z , Tr* = ( 1 - C0 / ) r r , 

Tro* = (1 - W)Tr0, 

CO* = C0(1 - / ) / ( ! - CO/). 

(4) 

(5) 

(6) 

For pure scattering (co = 1), the modified albedo is also unity. Thus, 
for a strongly "spiked" phase function as in equation (3), the isotropic 
solutions for the source function, flux, and intensity can be used by ' 
adjusting the optical coordinates and the albedo. The effectiveness 
of this type of approximation has been investigated for the one-
dimensional case by Hansen [27], Potter [28], Wang [29], and Sobolev 
[30]. 

The choice of/ is open to question. The most common approach 
is to set it equal to the asymmetry factor of the actual phase func
tion. 

/ = 
1 /»* 

2 J o 
cos6 P(9) sinG dQ. (7) 

This choice is appealing because it yields the correct asymptotic limit 
in the one-dimensional analysis. Van de Hulst [31] has stressed that 
g is the fundamental phase function parameter. A value of g near unity 
indicates strong forward scattering, whereas g near —1 indicates strong 
backward scattering. The value of g for isotropic scattering is zero. 

Solution of Transport Equation. The exact two-dimensional 
integral equation describing the source function is solved using the 
method of separation of variables and superposition. No mathematical 
approximation, such as Eddington's approximation, is employed. The 
intensity leaving the medium normal to the surface can be expressed 
as [6] 

IN(Tr*) = I~(Tr*, fl = 1,0) 

CO*/; 

8TT 

2 J o ° /3Jo(0Tr*) exp - - /32r,.0*
 2 fl(j8)d|8. (8) 

The quantity, co* Jrs(fiTr*)R(P)/<i-K would be the intensity leaving 
normal to the medium; if it were exposed to collimated radiation with 
a radial variation in the form of a Bessel function, i.e., Ja(f$Tr*)b(fi 
— 1)5(0). The Bessel function boundary condition is used to separate 
variables. The quantity /3 can be referred to as the spatial frequency 
of this boundary condition. When /? = 0, the incident radiation is ra
dially uniform, and the problem is one-dimensional. By letting x = 
/?7>*, equation (8) can be written as 

IN(Tr*) = 
u*h (r0\2 

Sir 
j xJo(x) exp 

1 lro\2 

A\r 
R(x/Tr*)dx. 

(9) 

Equation (9) has been evaluated numerically for a wide range of 
parameters [6] for r2 lN(Tr*)/ro2Ii- The results for pure scattering 
are shown in Fig. 1. The expression for the intensity leaving the me-
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dium in other directions is "much more complex and was not evaluated. 
However, the flux and power leaving the medium were calculated [6]. 
As expected, for conservative scattering, the power leaving is 7,-7iTo2. 
The interested reader is referred to [6] for the complete details. 

Limiting Cases. When r/ro is large the exponential term can be 
approximated by unity and the intensity can be expressed in terms 
of a universal function of rr*, i.e., 

IN(Tr*) = h 
'V G(rr*) 

where 

G(rr*) 
a;* r° 

8ir Jo 
xJo{x)R(x/Tr*)dx. 

(10) 

(11) 

Comparison of the results obtained from equations (10) and (11) re
veals that the approximation is valid to within one percent when r/ro 
> 10, see Fig. 1. 

An asymptotic relation for 1^ has been developed [29] for small Tr* 
and is repeated here for clarity, 

IN(Tr*)/Ii 
8TT 

(a)*)2 

32 

exp(-r 2 / r 0
2) 

r* {r0/r) exp - - ( r / r o ) 2 ;(r/ro)' (12) 

where 70 is the modified Bessel function of the first kind. The first 
term represents single scattering, while the second term represents 
double scattering. When r/ro > 10, single scattering can be neglected, 
and G can be approximated by 

(a.*)2 . 
G(rr*) -

32 
(13) 

At the other extreme rr* » 1 and r/ro > -10, the behavior is [32] 

G(rr*) = 0.33643/rr* (14) 

for a purely scattering medium (to* = 1). These results are true for 
other spatial distributions of the incident radiation, i.e., a circle of 
uniform collimated radiation as long as r/rQ > 10. 

Inspection of the numerical results reveals a maximum in G of 
0.04331 at 

rrmJ = 3.345 (15) 

for pure scattering. Thus, the maximum intensity is given by 

/max = 0.04331 /; r2/r0
2 (16) 

for r/ro > 10 and OJ* = 1. The influence of absorption is to reduce the 
maximum value of G and the optical radius where the maximum oc
curs. 

Experiment 
The experimental setup has been discussed in [8]; however, the 

salient points will be repeated here. The experiment was designed to 
simulate the theoretical model of semi-infinite optical depth and 
radius. 

Laboratory Setup. The laboratory apparatus used is shown 
schematically in Fig. 2. The source was a 50 mw He-Ne laser and is 
incident normal to the surface of the water. A five gallon rectangular 
smooth surfaced glass tank (21 cm wide, 35 cm long, and 25 cm high) 
with a cylindrical light trap at the bottom contained the distilled water 
and the scattering particles. The bottom of the tank and all surfaces 
of the light trap were sprayed with the highly absorbing, diffusely 
reflecting flat black paint whose reflectance is less than 2 percent. A 
detection system probe with an effective acceptance angle of 2.75 deg 
received the radiation emerging normally from the surface. This power 
was transmitted to a photomultiplier by a fiber optics bundle and the 
voltage drop across the load resistor of the photomultiplier was re
corded as a function of the detector position, r. 

When the particle number density is small, the scattering medium 
is not semi-infinite in optical depth; however, for this case only single 
and double scattering are important. When the number density of 
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Fig. 2 Schematic of the experimental setup 

Table 2 Effective scattering coefficients in water at 
a wavelength of 0.6328 jam and n = 1.20 

d(/ttm) 

0.03 
0.109 
0.312 
0.481 
0.500 
0.527 
0.801 
1.011 

Std. Dev. (/im) 

— 
0.0027 
0.0022 
0.0018 
0.0027 
0.0125 
0.0035 
0.0055 

X 

0.198 
0.720 
2.060 
3.176 
3.301 
3.480 
5.289 
6.670 

c(cm J) 
110* 

1440 
12500 
23000 
24070 
25600 
36500 
40200 

* Experimental value (theoretical value for the 0.03 /im particles was 33.33) 

particles is large, multiple scattering is important and the medium 
in the tank may be characterized as semi-infinite. The painted bottom 
and the light trap minimize reflection from the bottom. In addition, 
the walls of the tank, being smooth glass, reflect specularly. While 
Fresnel's relation indicates wall reflectances approaching unity at 
large angles of incidence, tests were run to evalate the importance of 
this affect. Data were acquired with the laser beam position near a 
wall of the tank. Wall effects were not detected until the laser beam 
position was within a 2'^ cm in of the tank wall. Since the laser beam 
was positioned 10 cm from any wall during data acquisition, it was 
assumed that the reflectance effects of the wall were negligible. Thus, 
the experimental set-up simulated the theoretical situation. 

Particle Characterization. The particles used as the scattering 
centers were selected from those commercially available from Dow 
Diagnostics, with one exception; that being the 0.03 fj.m dia particles. 
These particles were obtained from Monsanto Chemical. The Dow 
polystyrene latex particles were spherical and uniform in size. The 
selection of sizes range from 0.109 fim to 1.011 fim in diameter. The 
uniformity of the spheres is characterized by their standard deviation, 
which ranges from 0.0027 to 0.0125 jum (see Table 2). Figure 3 illus
trates this uniformity. Unfortunately, clear electron microscope 
pictures of the 0.03 /um particles could not be obtained, because they 
were too small. Thus, their size distribution could not be determined. 
All of the particles have essentially a neutral density (~ 1.00 g/cc) and 
the refractive index is 1.60. 

From Mie theory, these particles scatter anisotropically and exhibit 
a single scattering albedo of unity. The anisotropy character of the 
particles are illustrated in Fig. 4. This figure illustrates the variation 
in the scattered radiation from 0.109 and 1.011 jum latex particles in 
water at Arj = 0.6328 jum. Notice that as the size of the particle in
creases, the anisotropic nature of the phase function becomes more 
pronounced. In order to convince ourselves that these particles scatter 
in fashion* described by Mie theory, angular scattering measurements 
were made with a Brice Phoenix spectrophotometer on the 0.481 /xm 
particles. These data points are included as part of Fig. 5. The 
agreement between the measured scattered intensity and that pre
dicted by Mie theory is good. 

Data Acquisition Procedure. Starting with distilled water in 
the tank, the amount of radiation scattered normally from the water 
was recorded as the probe of the detector assembly was moved radially 
from the center of the laser beam. Once a data set was taken, addi
tional particles were thoroughly mixed into the water and the process 
was repeated. 

Even though some of the particles were large, no settling or other 
discernable time variations were detected over a period of several 
hours. For a given concentration of particles (thoroughly mixed) data 
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(17)

(18)

(20)

(19)

I ;;p = ; [i;J (~) 10-7

= 7.65 (~) 10-6
,

where 0= 2.75 deg (0.048 rad) , Ro = 0.190 cm, ro = 0.1 cm and V is in
volts and Pi in watts. Inspection of equation (17) reveals that the
experimentally determined intensity is very sensitive to the values
of ro, Ro, and 0. The sensitivity of the results to ro can be eliminated
by rearranging

r
2
I exp = 7.65 (~) 10-4 r2•

ro2Ii Pi

In order to obtain values of thJ optical thickness, the scattering
cross section for the particles had to be determined. It is convenient
to write T r in terms of the particle volume concentration 17 (volume
of latex particles per unit volume of mixture) and the effective scat
tering coefficient, c. Thus, one can write

Relation of Experiment to Theory
In order to relate the raw data (experimental) values to the theo

retical results an analysis like that discussed in [8] was made. The
resulting expression relating the experimentally measured intensity
leaving the medium normal to the surface and that entering the me
diumis

was reacquired after time intervals of from 30 to 60 min without re
mixing. In addition, the concentration was allowed to sit undisturbed
for more than 48 hours. It was then remixed and a data set reacquired.
The result was that there was essentially no difference in the data for
all cases.

The raw data of this study were adjusted slightly before calculations
were made and the results plotted. That is, the photomultiplier tube
(PMT) dark voltage level was subtracted from the voltage measure
ments and the location of the center of the laser beam was subtracted
from the position reading of the detector.

where c is the scattering cross section divided by the particle volume
and K of distilled water was taken as 0.005 cm-1 at ~o [33]. The scat
tering coefficient of the media is of a magnitude such that w is greater
than 0.99 for cases presented. The values of c, which were determined
theoretically using Mie theory, are listed in Table 2. The value of c,
for the 0.03 /.tm particles, was determined experimentally and this
value was used in data reduction, since the agreement with theory was
unacceptable. This disagreement was probably due to the wide size
distribution of these particles.

where d is the diameter of the uniform sized particles. This allows the
optical thickness (see equation 2(b)) to be written as

Results and Discussion
The experiments were carried out with a He-Ne laser. The tank was

filled with 15,820 cm3 of distilled water, which yielded a water depth
of 21.6 em. Polystyrene latex particles were used as the scattering
centers. The design of the detection system was such that the mini
mum radial position for which data could be taken was one centimeter
away from the center of the incident laser beam. This restricted r/ro
to be greater than 10. The lower end of the barrel was 0.64 em above
the water surface.

Figure 6 is presented to illustrate the dramatic effect of increasing
the concentration of scattering particles (1.011 /.tm in diameter) on
the scattered radiation. Notice from the sequence of pictures A
through F, that as the number of particles increased the apparent
scattering volume of radiant energy expands (A ->- F). Though not
presented in the figure, further addition of particles causes this
scattering volume to collapse. This effect continues until only radia-
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Fig. 3 Electron microscope picture of 1.011 Pom dia particles at a magnifi
cation of 10,000

8

Fig.4 Scattering phase function for 0.109 and 1.011 Pom dia latex particles
in water for ~o

Fig.5 Comparison of the angular variation of scattered intensity for 0.481
Pom diameter latex particles In water for Xo. Data were acquired by "0" rotating
the detector clockwise and "0" reversing the cell and rotating the detector
counterclockwise.
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Flg.6 Composite 01 pictures 01 the tank wllh various concentrations 01 1.011 J' diameter polystyrene latex particles In distilled water: (a) 1/ = 6.32
(10- 8 ) (b) 1/ = 3.79 (10- 5 ) (cl1/ = 7.59 (10-5 1(d) 1/ = 1.58 (10-4 ) (el1/ = 3.79 (10-4 ) (I) 1/ = 6.95 (10-4 1

tion reflected from the upper surface may be seen. This is the same
type of phenomenon discussed in [8].

Theoretically, isotropic results can be reduced to a single curve [6]
if one plots (rlra)2IexplIi versus T r at rlra greater than 10. Figure 7 is
the resulting plot for the anisotropic data obtained in this study.
Notice that all of the data did not collapse to a single curve. As was
discussed in the theoretical portion of this paper, this condition may
be remedied by use of the asymmetry factor, g. That is, the actual
optical radius for the anisotropic case, Tr, and the corresponding ef
fective optical radius for the isotropic case, T r *, are related by

T r* = (1 - g) T r (21)

characterized. The collapsed data may be approximated by the the
oretical isotropic results of reference [1].

Table 3 may be used for a detailed comparison of the data being
presented. The (1 - g) term was computed using Mie theory for n =
1.2 and the size parameter, x, as listed. Notice that the effective lo
cations of the maximum intensity are very near the theoretical value
(3.345). In addition, the magnitude of the non-dimensional intensity
at the peak varies from approximately 0.032 to 0.047. The differences
between theory and experiment are probably due to the simplistic
scattering phase function used in the theory. Ifa more realistic phase
function were used, the theory would probably predict a variation in
value of T rmax*.

when w = 1 (see equation (6)). The (1- g) factor transforms the an
isotropic problem to an effective isotropic situation. Correlating the
data using T r * collapses the data of Fig. 7 to that shown as Fig. 8. The
data appear to correlate better as T r* increases; this is consistent with
other one-dimensional investigations [30]. The 0.03 /l-m data do not
correlate as well as the rest because the particles are not as well
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Summary
A comparison of theoretical and experimental results of two-di

mensional, multiple anisotropic scattering is presented. The reader
is reminded of the physical situation, that is the detector is a large
distance from the incident beam (r » ra) and w ± 1. A multiple
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Table 3 Effect of asymmetry factor 

Fig. 7 Nondimensional scattered intensity versus the radial optical thickness, 
for various particle diameters 

10"' rTTT 

- THEORY 

TTT| 1 -

10' 

Fig. 8 Nondimensional scattered intensity versus the effective radial optical 
thickness: o => d = 0.03 jam, • =» d = 0.312 yun, A => d = 0.481 fan, 1 => 
cf = 0.500 fim, x => d = 0.801 /tm, + =» d = 1.011 jtm. 

scattering analysis is required for this study because at least two 
scattering events are required to redirect the photons back normal 
to the upper surface. 

The theoretical portion of this study indicates 
1 that as the asymmetry factor increases the nondimensional 

scattered intensity curve is shifted in the direction of larger T>, 
2 the magnitude of the maximum intensity is insensitive to par

ticle size, 
3 the anisotropic scattered nondimensional intensity distribution 

curves are dependent on g, the asymmetry factor, and collapse to a 
single curve by using (1 — g) as a correlation parameter. This yields 
a universal distribution function, G(r r*), and 

4 the maximum intensity of this collapsed curve occurs at T>* = 
3.345. 

The experiment was designed to be consistent with the restrictions 
of the theory. The results show that: 

1 The nondimensional scattered intensity curves are shifted in 
the direction of larger 77 as particle size increases for particles between 
0.03 nm and 1.011 /xm in diameter; 

2 the magnitude of the maximum nondimensional intensity is 
relatively insensitive to particle size; 

3 the experimentally determined nondimensional intensity dis
tributions for various particle sizes can be reduced to essentially a 
single curve by the use of (1 — g) as a correlation factor; and 

4 the maximum nondimensional intensity of these collapsed 
curves occurs at T>* values of approximately 3.3. 

Based on the results presented here, the adjustment of the scat
tering coefficient of paint in reference [8] to account for its anisotropic 
character seems justified. In that investigation, the measured scat
tering coefficient was reduced by 90 percent, which corresponds to 
an asymmetry factor of 0.9, to correlate the experimental and theo
retical results. Aligning the peaks of the non-dimensional intensity 
distribution for paint yields a value of 0.85 for g. A simple calculation, 
assuming the TiC>2, Silica, Calcium Carbonate and Vinyl Acetate 
particles in the paint as spherical, yields an asymmetry factor of 0.80 
to 0.85, depending on the size of TiC>2 particles used. Thus, an asym
metry factor value of about 0.9 seems appropriate for paint. This re
sult adds support for using (1 — g) as a correlation factor. 

d(ii) 

0.03 
0.109 
0.312 
0.481 
0.500 
0.527 
0.801 
1.011 

X 

0.198 
0.720 
2.060 
3.176 
3.301 
3.400 
5.289 
6.670 

W Ii 
0.032 
— 
0.035 
0.047 
0.040 
0.040 
0.040 
0.032 

max 

0.99 
0.91 
0.32 
0.19 
0.18 
0.17 
0.10 
0.08 

T r m « 

3.3 
— 
10 
17 
17 
22 
32 
39 

^max 

3.3 
— 
3.3 
3.2 
3.0 
3.6 
3.3 
2.6 

Multi-dimensional, radiative transfer with anisotropic scattering, 
offers many interesting challenges for future work. While the com
parisons of theory and experiment of this investigation are quite 
satisfying, the region of 77* less than one needs further attention. Also, 
the effects of refractive index of the media, reflection characteristics 
of the bottom, and absorption (« < 1) need to be investigated. 
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Dense, Vertical Jets with Two 
Opposing Buoyancy Components 
The height to which dense, vertical jets with two opposing buoyancy components rise was 
investigated experimentally. In the experiment, the dense, vertical jets were produced 
by using the temperature difference between the jet at the nozzle and the surroundings 
as the positive buoyancy component, and by using common salt and CUSO4 alternatingly 
for the negative buoyancy component. Based on a dimensional argument, it was found 
that the three nondimensional parameters of (1) the ratio of the jet height to the nozzle 
diameter, H/rj, (2) the internal Froude number, Fr, and (3) the density ratio, R, all govern 
the behavior of the jet. The data were well correlated when H/rjFr was plotted against 
against 1/R in the range of 0 < 1/R < 0.9, showing that H/rjFr tends to fall with an in
crease of 1/R. A least square fitting of the data yielded the explicit form of the jet height 
to be 

H 

O-Fr 
•=C (1) 

'libuted by the Heat Transfer Division for publication in the JOURNAL 
'TRANSFER. Manuscript received by the Heat Transfer Division April 

H 

2.67 rjFr 

1 

0.84 

R 

for 0 <1/R < 0.27. 

+ 1.23 for 0.27 < 1/R < 0.9. 

1 Introduction 
When a jet which is heavier than the surrounding fluid is directed 

upward, it first rises with rapidly decreasing velocity to a certain 
height, at which point the entire jet comes to rest and collapses at the 
top. Then the downflow from the top of the jet completely surrounds 
the upflow, and the jet settles down to a steady state. At this state, 
the height of the jet is lower than the height it had originally attained 
because the upflow is now exchanging the fluid with the heavier 
downflow rather than the stationary surrounding fluid (see Fig. 1). 

Turner [1], as part of a study of cloud behavior, was the first to 
experimentally determine the height to which a dense, vertical jet with 
a single buoyancy component will rise. Other research on a jet with 
negative buoyancy issuing vertically into a homogeneous fluid includes 
studies of effluent discharge into the ocean [2] and waste gas discharge 
into the atmosphere [3]. 

This work deals with the height of a heavy jet into which a positive 
buoyancy component has been introduced to produce a jet with two 
opposing buoyancy components. For example, the positive (upward) 
buoyancy component is provided by the temperature difference be
tween a warm salt solution jet and its surroundings while the salinity 
of the solution provides the negative (downward) buoyancy compo
nent with the overall density of the jet being heavier than the sur
roundings. This work has arisen out of a study of jet mixing of the 
contents of a large tank [4], a condition in which the height of the jet 
is an important factor for mixing efficiency. 

2 Dimensional Analysis 
Preliminary testing showed that the shdpe of the dense, vertical 

jet with two opposing buoyancy components is quite similar to that 
of the vertical jet with a single buoyancy component, suggesting that 
a dimensional argument similar to the one used to analyze the vertical 
jet with a single buoyancy component can be developed as a basis for 
the experimental investigation. 

Turner [1], employing a dimensional argument, has arrived at the 
conclusion that for a dense, vertical jet with a single buoyancy com
ponent, the ratio of the height to the radius of the nozzle, H/rj, is di
rectly proportional to the internal Froude number at the jet nozzle, 

His experimentally obtained value of Cis 2.46. For a dense, vertical 
jet with two buoyancy components, the internal Froude number in 
addition to the geometrical ratio of H/rj is also important since both 
initial buoyancy and momentum are relevant quantities. 

The third nondimensional parameter which is important in the 
analysis of jets is the entrainment coefficient, E, which is the ratio of 
a mean inflow velocity across the jet boundary to the mean jet upward 
velocity. In many studies of jets [5-8] E was assumed to be constant 
along the direction of a jet. On the other hand, Abraham [9], in his 
theoretical study of a dense, vertical jet with a single buoyancy com
ponent, proposed to divide the jet into two regions, one with a positive 
value of E near the nozzle and another with a negative value of E near 
the maximum jet height. His analysis yielded the value of 2.74 for C 
in equation (1) which is in excellent agreement with the experimental 
results considering the complexity of the actual jet behavior. In the 
analysis of our experimental results, however, it was implicitly as
sumed, as Turner [1] had, that the entrainment coefficient does not 
enter as an important non-dimensional parameter; i.e. E or its change 
will follow an a priori similarity assumption. 

The fourth nondimensional parameter, which is the result of in
troducing an additional buoyancy component, can be derived from 
the equation of state. Consider a case in which a warm aqueous solu
tion of common salt is issued upward from a nozzle into fresh water 
surroundings. Then the linearized equation of state is, 

P~ P°> -a(T - T„) + 0 S. (2) 

When the above equation is applied to the jet at the nozzle (p = pj, 
T = Tj: S = Sj), the term a(Tj - T„) gives the positive (upward) • 
buoyancy component, while (SSj gives the negative (downward) 
buoyancy component. Since various combinations of the positive and 
negative buoyancy components exist for a given net (negative) 

Downf l o w -

Fig. 1 Sketch of a dense, vertical jet 
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buoyancy of the jet at the nozzle, the ratio of the two opposing 
buoyancy components R = /3Sj/a(Tj - T„), which is usually referred 
to as the density ratio or the stability parameter in the study of dou
ble-diffusive phenomena [10], emerges as an additional nondimen-
sional parameter. 

In order to obtain the exact form of the relation among the three 
parameters of H/rj, Fr and R, the following experimental investigation 
was conducted. 

3 E x p e r i m e n t 
Figure 2 shows a schematic diagram of the experimental apparatus. 

The experiment was conducted using a 50 cm wide X 100 cm long X 
120 cm high acrylic tank with a nozzle located at the center of the tank 
bottom. A 6000 cc capacity reservoir was suspended from the ceiling 
and connected to the nozzle in the acrylic tank by a thermally insu
lated pipe containing an on-off valve. Two scales were attached to the 
side walls of the tank for determining the jet height. The jet speed 
issuing from the nozzle could be adjusted by varying the vertical 
distance between the free surface of the tank and the reservoir in the 
range of 200 — 1500 mm. During the run the effect of the change in 
the reservoir fluid level on the jet speed was negligible since the level 
change was less than 10 mm in 200 mm head runs and less than 50 mm 
in 1500 mm runs. A distance of 5 - 20 cm between the tip of the nozzle 
and the bottom of the tank was maintained so that the outer falling 
stream could be collected in this space. It should be noted that one 
experimental run had to be completed before the liquid of the outer 
falling stream filled up this lower space of the tank. Nozzles were made 
of 2 mm thick glass tubing and a copper-constantan thermocouple 
was inserted to a depth of 6 cm from the tip of each nozzle to measure 
the temperature of the jet at the nozzle. The thermocouple was con
nected to a digital temperature indicator, which enabled us to de
termine the change of temperature with time. The thermocouple was 
estimated to be accurate to within ± 0.5°C. 

An experimental run started with the filling of both the tank and 
the nozzle-to-valve pipe with fresh water and leaving it for ~ 4 hr to 
simulate still surroundings as much as possible. At this point, a set 
amount (~ 5000 c.c.) of salt solution (colored by methylene blue) with 
predetermined salinity and temperature was introduced into the 
reservoir; the temperature of the water in the tank was measured by 
a thermometer and the valve leading from the reservoir to the nozzle 
quickly opened with the timer switched on. At the steady state, the 
height and the temperature of the jet were read. Then the valve from 
the reservoir to the tank as well as the timer was switched off and the 
remaining amount of salt solution in the reservoir measured. The jet 
speed at the nozzle was estimated from the initial and final volume 
of the salt solution in the reservoir along with the elapsed time for a 
given run. The error in this method of speed measurement is likely 
to be caused by the effect of the initial transient state. To estimate 
the error, jets were issued into the air, and the overall jet speed, ob
tained from the total elapsed time and from the initial and final vol
ume of the salt solution in the reservoir, was then compared with the 
steady state jet speed. The latter was obtained by measuring the 
elapsed time and the amount of jet fluid collected in a measuring 
cylinder after a steady state was reached. For our experimental range, 
it was found that the value of the overall jet speed is lower than that 
of the steady state speed by 2.0 percent or less, confirming that the 
measurement of the jet speed is sufficiently accurate. The data of any 
run in which the outer falling stream did not completely surround the 
core jet were discarded. 

The change of density with both concentration and temperature, 

Reservoir 
(Cap6city = 6000c.c.) >"fl 

On/Off Valve 

Nozzle-to-Valve 
Pipe 

(thermally insulated) 

Effect ive Head 
( r .ng . :200- 1500mm) R e a d i n g S c a | e 

Acrylic Tank 
. (50cmWX lOOemL X l20cmH) 

Nozzle 
(made of glass.t = 2mm) 

Thermocouple 

Fig. 2 Schematic diagram of the experimental apparatus 

T a b l e 1 R a n g e of e x p e r i m e n t 

Jet Temperature at the Nozzle 
Jet Salinity at the Nozzle 
Nozzle Diameter 
Temperature of the still 

surroundings 
Nozzle Reynolds Number 

25-80°C 
1-10 weight percent 

1.0, 2.0, 3.0, 3.6, 5.6 mm 
15-25°C 

: >2500 

a quantity required for computing the jet density at the nozzle as well 
as the density ratio, was obtained from the International Critical 
Table [11]. To measure the concentration of salt and CuSC>4 accu
rately, a small sample of liquid was extracted before and after each 
run and its refractive index was read through a refractometer having 
the capability of analyzing 1/1000 percent difference in concentration. 
Table 1 indicates the range of our experiment. 

4 R e s u l t s a n d D i s c u s s i o n 
First, the height of dense, vertical jets with a single negative 

buoyancy component was measured, using common salt as a tracer. 
Figure 3 shows the results of the experiment along with the straight 
line approximations proposed by Turner [1] and by Abraham [9]. As 
can be seen, most data points fall between Turner's results and 
Abraham's proposition. The least square fitting of our data yielded 
the value of C in equation (1) of 2.67. The scattering of data is prob
ably due to the reading error of the jet height, although its fluctuations 
were small and random. 

With the accuracy of our method confirmed through the afore
mentioned preliminary investigation, the height of the dense, vertical 
jet with two opposing buoyancy components was measured. The 
temperature difference between the jet at the nozzle and the sur
roundings was used as a positive buoyancy component throughout, 
while common salt was used as a negative buoyancy component ini
tially, followed later by the use of CuS04 to test the generality of our 
analysis. 

In order to find the relationship among the three nondimensional 
parameters, the constant, C, in equation (1) was replaced by some 
function of 1/fl to assume the following form, 

H 
- = f(l/R). (3) 

2.67 r/Fr 

Figure 4 is the summary of our experimental results, plotted according 
to equation (3). The data were found to be closely fitted with a curve, 
whose functional form obtained from a least square fitting is, 

. N o m e n c l a t u r e * 

C = a constant defined in equation (1) 
E = entrainment coefficient 
Fr = internal Froude number = [p„ Uj2/g(pj 

- pjrj]™ 
g = gravitational acceleration 
H - jet height 
r = nozzle diameter 

R = density ratio = /3Sj/a(Tj - T„) 
S = salinity 
T = temperature 
u =jet speed 
a = volume expansivity = — l/p(op/6T) 
P = l/p(dp/dS) 
p = density 

Subscr ipts 

j = jet nozzle 
n — jet with a negative buoyancy compo

nent 
p = jet with two opposing buoyancy compo

nents 
<= = still surroundings 
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H 
for 0 < 1/fi < 0.27. 

0.84 
2.67 rjFv + 1.23 for 0.27 < 1/R < 0.9. 

R 

(4) 

and it is also shown in Fig. 4. 
As can be seen, all the data points, including data using CuS04 

instead of common salt as the negative buoyancy component, fall into 
a consistent curve providing a good overall correlation. Slight scat
tering of the data is thought to be caused either by the effect of non-
linearity in the equation of state or by the reading error of the jet 
height, the former becoming nonnegligible as both temperature and 
salinity differences increase. The data cover the inverse of density 
ratio, 1/fi, in the range of 0 — 0.9. At 1/R = 0 the jets contain only a 
single negative buoyancy component, and Fig. 4 indicates (1) that for 
0 < 1/fi < 0.3 the effect of the positive buoyancy component does not 
reveal itself (i.e., the jet height can be estimated with reasonable ac
curacy using equation (1)) and (2) that as 1/R moves beyond ~ 0.3 the 
measured jet height, normalized with respect to 2.67 rj Fr, decreases 
roughly linearly with 1/R. 

The physical interpretation of the curve falling with an increase 
of 1/R is as follows: The height to which a one-component, heavy jet 
rises is expressed by equation (1), and, given a nozzle diameter and 
a jet speed at the nozzle, the height of the jet depends on (pj — p„), 
which in turn is a function of the concentration of salt in the jet; on 
the other hand, for the jet with two opposing buoyancy components, 
(pj — p«o) is a function of both the salinity and temperature of the jet. 
If we let a heavy jet with a negative buoyancy component have a sa
linity of Sn, and a heavy jet with two opposing buoyancy components 
have a salinity of Sp and a temperature of Tp (> T„) so that the jet 
density at the nozzle, pj, for both jets is equal, then 

Sn 

1/R. 
(5) 

Equation (5) shows that, as 1/R increases from zero, the salinity of 
the two-component jet, Sp, has to increase in order to achieve the same 
initial density, pj, as the one-component jet. As the two-component 
jet issues from the nozzle, the entrainment decreases the positive 
buoyancy effect, while the negative buoyancy flux at any vertical 
distance from the nozzle is higher than the one-component jet, re
sulting in a jet height lower than that of the one-component jet. 

For 1/R > 0.9, heavy jets with two-components created a "growing 
cloud" much like a thermal over the nozzle and did not produce an 
outer falling stream. 

4 Conclusions 
Based on the dimensional argument followed by the experimental 

investigation, the following conclusions were derived: (1) The behavior 
of dense, vertical jets with two opposing buoyancy components are 
quite similar in nature to that of jets with only a single negative 
buoyancy component studied previously by many researchers, in that 
the steady vertical jet only rises to a certain height surrounded by an 
outer falling stream. (2) The ratio of the jet height to the nozzle di
ameter, H/rj, is a function of the internal Froude number, Fr, and the 
density ratio, R, the latter being a newly introduced nondimensional 
parameter resulting from the simultaneous presence of two opposing 
buoyancy components. (3) It was experimentally verified that the 
form of the relationship among the three nondimensional parameters 
is 

H 
- = /( l /f l) , 

2.67 r/Fr 

and that the value of H/2.67 r/Fr tends to fall with the increase of 1/fi. 
(4) The least square fitting of the data gives the following explicit form 
of/(1/fi), 

/ (1 / f i ) : 

1 for 0 < 1/fl < 0.27. 

0.84 

fi 
- + 1.23 for 0.27 < 1/fi < 0.9. 

300-

.SP 200 
1 

100 

* > ' 

jr 

40 80 100 120 
Fr 

Fig. 3 Experimental results of the height of vertical jets with only a negative 
buoyancy component. ® = experimental data. = least square fitting 
of the data. - - - = Abraham's result [9]. = Turner's result [1] 

1.2 

-1 1 I L. 

1.0-j—o-0—x^- \ o 
A , 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 
1 / R 

Fig. 4 Experimental results of the height of vertical jets with two opposing 
buoyancy components. O = nozzle diameter 1.0 mm, NaCi jet. D = nozzle 
diameter 2.0 mm, NaCI jet. V = nozzle diameter 3.6 mm, NaCI jet. A = nozzle 
diameter 5.6 mm, NaCI jet. © = nozzle diameter 1.0 mm, CuS04 jet. X = 
Nozzle diameter 3.0 mm, CuS04 jet. A = nozzle diameter 5.6 mm, CuS04 Jet. 

= least square fitting of the data (= equation (4)). 
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Introduction 
The problem of turbulent convection with a jet flowing tangentially 

to a heated flat surface (wall jet) has been widely studied with dif
ferent configurations: surface with constant heat flux [1, 2] or with 
a step wall temperature [3,4] as well as surface with mass transfer [5]. 
In all these investigations, the prediction of the heat (or mass) transfer 
rates follows the same procedure as in a classical boundary layer: St 
= R Cf/2, R being the Reynolds analogy factor. However, there re
main some discrepancies in the proposed correlations for C/ and there 
are also some doubts about the value of R. This note attempts to 
supplement the relation between heat transfer and skin friction for 
turbulent wall jets and presents some additional results pointing out 
the differences with a classical boundary layer. 

Experimental Conditions 
The experiments were made with three slot thicknesses (7,13 and 

20.5 mm) leading to slot Reynolds numbers ranging from 9000 to 
60,000. The test heating plate (constant heat flux) is 1.50 m long with 
the beginning of heating located at the nozzle exit. The velocity 
measurements were made with total-head tubes and also with a hot
wire probe connected to a constant temperature anemometer. Wall 
shearing stresses were measured by the Preston's method which leads 
to a relative accuracy of ±2.5 percent on the friction factor Cf. The 
temperature profiles were obtained by a chromel-constantan ther
mocouple constructed according to Blackwell and Moffat [6] while 
the wall temperatures were determined by chromel-constantan 
thermocouples embedded near the heating surface. The physical 
characteristics of the fluid are evaluated at ambient temperature and 
the resulting error in the Stanton number measurement is below ±3 
percent. Further details of the experimental apparatus and procedure 
may be found in [7]. 

Wall Jet Flow and Friction Factor 
Figure 1 describes the regions of the wall-jet flow at a given section 

and helps to define the nomenclature used. 
1 Representation of the External Inner Layer. The region 

extending from the wall to the maximum velocity line (that we will 
call inner layer) differs notably from a classical boundary layer by 
virtue of the fact that it is developing under the influence of an ex
ternal flow: it is a disturbed boundary layer. The extensive experi
mental study of this inner layer [7] shows that it is possible to repre
sent, for a certain distance from the nozzle exit, the structure of the 
external inner layer by means of a group of nondimensional iso-ve-
locities u* = u/um where um represents the maximum velocity for a 
given section. This group defined in the region 0,7 < u* < 1 is made 
up of straight lines originating from a single point whose x- coordinate 
(x = — x i = — 20e) is independent of the slot Reynolds number Re = 
uoe/v and whose y-coordinate y\ is a function of Re.1 Figure 2 illus
trates the validity of such a representation for e = 7 mm. Similar 
findings were obtained for e = 13 and 20.5 mm. Hence the velocity 
profiles associated with the external inner layer can be expressed 

u = u.m-f 
y-yi 
X + Xl 

, Re (1) 

1 We have proposed [7] to take x\ ^ 20e, considering an average value ob
tained from our own results as well as from those obtained from the published 
literature. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
November 27,1979. 

defined for y,- < y < <5, y; being the lower limit of the wall distance 
valid for such representation. It has been possible to show that such 
a representation is consistent with the bibliographical results as well 
as its superiority over the y/b defect laws generally used. 

2 Representation of the Friction Factor. By analogy with 
classical boundary layer analysis, attempts were made to correlate 
the friction factor Cf with thickness Reynolds number umb/v. The 
results revealed a systematic influence of the jet nozzle size, as one 
can see in Pig. 3. In the case of e = 7 mm, the experimental results are 
quite near the Bradshaw-Gee's relation for a wall jet. 

Cf = 0.0315 

The data for e = 13 and 20.5 mm approach the Sigalla relation: 

umb\-01 

OUTER LAYER 
(OR JET REGION) 

INNER LAYER 
(OR BOUNDARY 
LAYER REGION) 

u* = 0.7 1 u*=u/um 

Fig. 1 Wall jet nomenclature 
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e = 7 rr)rp 
Re =14900 / 

A 

/ ^~ — • 

/ 
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0.95 -

0.9 

0.85 
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Fig. 2 Nondimensional isovelocities in external inner layer (e = 7 mm). 
Similar straight lines have been found for e = 13 mm (Re = 28,000) and e 
= 20.5 mm (Re = 56,000). 

5 - 0.0565 ( V ) " 0 2 5 

J I L_l I I I , 
2 4 6 8 10* 2 ^ 4 

Fig. 3 Experimental values of friction factor: comparison with classical 
laws 
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Cf = 0.0565 fr)~ (see [8]) 

These findings have also been reported by Mabuchi and Kumada [5] 
who used nozzle thickness of 4 and 10 mm. On the other hand, all data 
can be brought to lie approximately on a single line by using X i (=x 
+ x i) instead of 5 as the characteristic length in the Reynolds number. 
This is demonstrated in Fig. 4 and the experimental results can be well 
represented by 

Cf = 0.0810 p ^ (2) 

This correlation remains universal because the quantity Xi = x + x\ 
(with x\ =* 20e) is nearly independent of the experimental conditions 

PI-

Local H e a t T r a n s f e r in the F u l l y D e v e l o p e d R e g i o n 
Figure 5 shows the dimensionless temperature plotted in loga

rithmic representation valid near the wall:2 

Tw-T 

TT 

; AT log h BT 
v 

(3) 

with AT = 2.8 and BT = 6.7 based on our experimental results. A 
comparison is made with a similar law valid for classical thermal 
boundary layers in air with AT = 4.9 and Br = 3.6 in accordance with 
the bibliographical compilation of Kader and Yaglom [10]. The 
temperature profiles are conventional for y uT/v < 50. 

Figure 6 presents the evolution of the ratio St/C/ with the nondi-
mensional coordinate Xi/e for Xi /e > 50 (fully developed region): 
Experimental values of the Stanton number are divided by the mean 
value of the friction factor defined by (2). This representation shows 
a slight increase of the ratio St/C/ when the quantity XJe increases; 
such a tendancy, in conflict with classical analogies between heat and 
momentum transfers, has been already experimentally observed by 
Mathieu [11] in the case of a heated jet flowing tangentially along a 
wall. 

D i s c u s s i o n 
The previous results have led us to recognize the difference in heat 

transfer which exists between a classical boundary layer with low 
turbulence stream and a wall jet. In the case of classical boundary 
layers in air (Prandtl number Pr = 0.7), heat transfer is practically 
governed entirely by the evolution of the phenomenon in the wall 
region and, hence, the analogy between heat and momentum transfer 
leads to a simple relation: 

S t / C / ^ A ^ 
' 2 AT 2Pr( 

(4) 

where Prt is the turbulent Prandtl number within the logarithmic 

2 We can simultaneously write a logarithmic representation of the velocity 
profiles near the wall with the coefficient initially proposed by Tailland [9], A 
= 4.15 and B = 8.1: 

± = 4.15 l o g ^ + 8.1 

5 -

T 1—i—i—r 

i= 7 mm o 
13 
20.5 D 

.TAILLAND * 

I 

' ^ o . * 0 . 0810 (^ ) - a 1 9 2 

J I I I I ' I 
8 10" u m X, 

Fig. 4 Experimental values of friction factor: comparison with the proposed 
correlation with um X,/p. Comparison with the mean values of Tailland 
[9] 
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Fig. 5 Logarithmic representation of temperature profiles In inner layer 
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Fig. 6 Relation between Stanton number and friction factor 

layer [10]. Such an approach is not valid in the case of a wall jet. Indeed 
we see that 
(a) If the relation St/C/ a* 0.5 A/AT is used indiscriminately, it gives 
St/C/ ca 0.75, instead of the more correct value 0.6, since AT/A = 
2.8/4.15 =* 0.67. 
(b) The St/C/ ratio increases slightly with XJe. 

For most technological applications, it is permissible to consider 
an average value for the ratio St/C/. Thus, using the relation (2) we 
can write for a constant heat flux plate: 

Nux/i = — = 0.034 

as shown in Fig. 7. Included are some data obtained from the average 

- N o m e n c l a t u r e . 

A, AT = respective slopes of velocity and 
temperature profiles in logarithmic rep
resentation 

Cf = 2Tw/pu2
m = friction factor 

e = slot thickness 
h = <3?/(T„, - Tact) local heat transfer coeffi

cient 
Nux/i = hXi/k = local Nusselt number (k, 

thermal conductivity) 
Re = uoe/v slot Reynolds number {v, kine

matic viscosity) 
Rex/i = umX\lv local Reynolds number 

St = h/pCpUm = local Stanton number (p, 
mass density; Cp, specific heat at constant 
pressure) 

T, Ta, Tad
 = local, ambient and adiabatic 

(without heating) temperature 
TT = (Tw - T J S t VC^72 shear tempera

ture 
u = velocity component in the x-direction; u* 

= ulum nondimensional velocity 
UT = V'fwlp friction velocity 
x,y = coordinates along wall and normal to 

wall 

= —xi, y\ = coordinates of the virtual origin 
of the external inner layer according to the 
proposed schematization (xi e* 20e); Xi = 
x + xi 
= y-coordinate at the maximum velocity 
point 
= shearing stress 
= local convection heat flux 

Subscripts 

w = value at the wall 
m = value at the maximum velocity point 
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Fig. 7 Mean representation of local Nusselt number versus local Reynolds 
number. Cross plot as in Fig. 6. Comparison with the mean results of Myers, 
et al. [3] (constant temperature plate) 

corre la t ion p roposed by Myers , e t al. [3] for a c o n s t a n t t e m p e r a t u r e 

p la te . We observe t h a t t h e average value of S t /C / remains expressible 

by a n empir ica l re la t ion like the Colburn equa t ion which Reyno lds , 

e t al. [12] modif ied (in t h e range 0.6 < P r < 1) to read: S t / C / = 

l / 2 . P r - ° - 4 . F o r P r = 0.7, th i s expression gives S t / C / = 0.577 for an 

i so thermal p la te . 
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The Prediction of Three-Dimensional 
Discrete-Hole Cooling Processes 
Part 2: Turbulent Flow 
Computer simulations are described of the injection of a secondary coolant fluid through 
a row of downstream-facing holes arranged across a surface exposed to a hot parallel gas 
stream, as occurs in certain discrete-hole cooling systems for turbine blades. The simula
tion is performed by soloing the governing equations numerically, with the effects of tur
bulence modelled in a way which allows for the anisotropics existing in the real situation. 
Comparisons with measurements obtained for injection angles of 30 deg and dimension-
less blowing rates in the range 0.2 to 0.5 show good agreement in the majority of cases. Dis
crepancies are however observed at conditions of small upstream boundary layer thick
ness or large injection rates and the causes of these are identified and discussed. 

1 Introduction 
In an earlier paper [1] the authors described the development and 

application of a numerical procedure for calculating the three-di
mensional flow and thermal fields arising from coolant injection from 
a single transverse row of downstream-angled discrete holes into a hot 
laminar boundary layer, the ultimate aim being to predict discrete-
hole cooling of turbine blades as illustrated in Fig. 1. Subsequently, 
the procedure was extended to encompass turbulent flow through 
inclusion of a turbulence model which allowed for the anisotropies 
of transport coefficients exhibited by the real flow; and comparisons 
were made with experimental data for single-hole [2] and double-row 
[3] arrangements, with encouraging results. The present paper is 
concerned with comparisons for the single-row arrangement in tur
bulent flow and also reports new measurements for this obtained as 
part of the study. 

Previous work in this area has been confined to experiments, a 
summary of which will be provided later. 

2 Description of Calculation Method 
Inasmuch as the methodology has already been presented in [1-3] 

and is extensively described in [4], only an outline will be provided 
here. 

Governing Equations. With reference to Fig. 1, the assumed 
stationary three-dimensional turbulent flow is governed by the fol
lowing differential conservation equations for momentum, continuity 
and energy (or tracer species concentration): 

dpU dpV dpW 

dx dy dz 

T1dU d<7 a i / 
pU— + pV—+ pW— = 

dx dy dz 

dV dV dV 
pU — + pV—+ pW— = 

dx dy dz 

rrdW dW „dW 
pU + pV + pW = 

dx dy dz 

0 

dp drxy dTV 

d* 

t>y 

• + 
^y 

dTyy 

dy 

dz dy 

dJ. 

dz 

drZy 

dz 

drzz 

dz 

rrd^_i_ V^A. H / d * dJ^y . pU 1- pv h pW— = + -
dx dy dz dy dz 

(1) 

(2) 

(3) 

(4) 

(5) 

where x, y and z denote the streamwise, vertical and lateral directions, 
respectively, <t> stands for either specific enthalpy or the mass fraction 
of an inert tracer gas (employed in some experimental studies) and 
J,l>j and Jfa denote the corresponding diffusional fluxes. The re
maining, conventional, symbols are defined in the Nomenclature. 

Omitted from the above equations are the x-wise gradients in the 
stresses and diffusion fluxes, and it is also assumed the U is positive 

everywhere: these form part of the standard boundary layer approx
imations (the only part involved here) and allow important economies 
to be made in the numerical solution procedure, as will shortly be 
outlined. The validity of the assumptions will be discussed later. 

The total stress and flux components are obtained from the fol
lowing anisotropic relations, deduced in [4] from the general turbu
lence transport models of Launder, et al. [5, 6]: 

,dU 
Txy = (/i + P-t) — 

dy 

bU 
Tzx = (fl + fpt)— 

dz 

dV 
Tyy = 2(P + Ut)—-

dy 

dW dV 
•• (p, + nt) — + (p- + fp-t)-— 

dy dz 
•2(p + pt) 

d_W 

dz 

d<h 
= (r + rt)-£ 

dy 

(r + / r f ) ^ 
dz 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

where the turbulent viscosity ut and diffusivity I \ are obtained 
from 

pt =0.09 pk2/e 

T, = fit/0.9 

(13) 

(14) 

where k is the turbulence energy and t its dissipation rate, both of 
which are calculated from their own transport equations: 
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dx dy dz 

?) 

dy 

T\h 
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L 3y 
d 

+ — 
OZ 

f dk] 
(n + fnt) — 

dzj 
+ P - £ (15) 

Trde rrde „ , d£ 
p{7— + p V — + p W 

d* 

P=/* t 

dy 

m\2 
idyj 

_ _ _ d _ 

dz dy 

d 

(/* + /i«) de 

dz 

1.3 dy, 

(/i + f/it) de 

1.3 dz 

Pe 
+ 1.44—• 

k 
1.9-

dV\2 [dW\2 
,dy) Idyj 

+ /M( 
dLA2 ^ 

dz / \ dz 3""f 

(16) 

dzj 
The quantity / is an anisotropy coefficient for the lateral direction 
and is intended as an approximation to the variation of w2/v2 across 
the boundary layer, as explained in (2): it is taken as 

/ = 3.5 - 2.5y/A y < A 

f = l y > A 
(17) 

where A is the height at which U reaches 0.9 of the free-stream ve
locity. 

Solution Procedure. The foregoing equations are solved by an 
adaptation of a finite-difference procedure developed by Pratap and 
Spalding [7] coupled, in some instances, with a similar procedure by 
Patankar and Spalding [8]. Details of the adaptation are given in [2, 
4] and are summarized below. 

A computational grid is superimposed on a symmetry element of 
the flow bounded by the longitudinal planes bisecting a hole and the 
gap to its neighbor as illustrated in Fig 2. The grid extends upstream 
some 1.5D where trial and error calculations show the oncoming flow 
to be undisturbed by injection: the profiles of the dependent variables 
there are either taken from measurements where available, or are 
estimated from two-dimensional boundary layer theory. 

The vertical extent of the grid is adjusted locally so as to just en
compass the region of disturbed flow: the conditions imposed there 
are therefore those of the free stream. At the adiabatic/impermeable 
parts of the solid surface, the inner solution is matched to a general
ized law of the wall, with corresponding specifications on k and e, while 
d<l>/dy is set to zero. Over the injection hole, the inlet velocity com
ponents are set on the assumption that the flow enters at a uniform 
velocity Vj and angle a, and the k and e distributions are set at those 
of a fully developed pipe flow. 

Finite-difference equivalents of equations (2-5, 15) and (16) are 
derived which connect values of the dependent variables at the 
neighboring nodes in the lateral and upstream, but not downstream, 
directions: the latter feature, which is a consequence of the simplifi
cations to the differential equations mentioned earlier, allows the 
equations to be solved for a given pressure field by a downstream-
marching procedure, which moreover requires only two-dimensional 
storage of the variable fields. 

Fig. 2 The domain of solution (shown shaded) for the partially-parabolic 
calculations 

The pressure field is obtained in one of two ways, depending on the 
region of flow considered. In those parts where strong three-dimen
sional pressure disturbances are provoked by injection, a set of con
tinuity-based finite-difference equations is solved for the pressure 
field. In contrast to the equations described above, these contain 
linkages to neighboring nodes in all directions, require three-di
mensional storage and are solved iteratively. After each pressure it
eration the velocities and other variables are adjusted via the marching 
procedure to bring them into balance. During this "semi-elliptic" 
calculation process due to Pratap and Spalding [7] the pressure at the 
outlet plane of the grid is estimated by linear extrapolation from the 
interior; and the negative velocities which are generated immediately 
downstream of the hole (which are physically realistic but invalidate 
the key assumptions made at the outset) are suppressed. The latter 
practice is essential to the working of the method but does introduce 
some error, as discussed later. 

Beyond about 5 hole diameters downstream of injection, the 
streamwise pressure gradient dp/dx becomes uniform and equal to 
the free-stream value, thereby allowing application of the noniterative 
marching "parabolic" procedure of Patanker and Spalding [8] which 
is similar to the above, but solves only for pressure variations in the 
cross-stream plane. 

Typically the grid employed for each semi-elliptic calculation 
contains about 400 nodes in each cross-stream plane and some 50 such 
planes. Around 70 iterations are required for convergence and the 

-Nomenclature. 
D = diameter of injection hole 
f = anisotropy factor 
J<i>,y, J$,z = diffusive fluxes of <j> in y, z direc

tions 
k = local mean turbulence energy 
M = dimensionless injection rate PjVjl 

p.U. 
p = static pressure 
P = turbulence energy production rate 
Ren = Reynolds number in coolant passage 

pVjD/n 
S = spacing between holes 
U = local mean velocity in x direction 
V = local mean velocity in y direction 
Vj - mean injection velocity 

u2 = mean square velocity fluctuation about 
V 

W = local mean velocity in z direction 
w2 = mean square velocity fluctuation about 

W 
x = streamwise coordinate measured from 

leading edge of hole 
y = normal coordinate to surface 
z = lateral coordinate measured from longi

tudinal bisector of hole 
a = injection angle 
r . r * = molecular, turbulent diffusion coef

ficients pertaining to y direction 
&i = displacement thickness 
t = local mean turbulence energy dissipation 

rate 

7) = dimensionless temperature/concentra
tion (4> — 0„)/(^j - 4><°), also effectiveness 
when pertaining to wall 

7) = laterally-averaged effectiveness Jo r)dx/s 
/x,/Lij = molecular, turbulent viscosity 
p = density 
Tem = total stress acting in m direction on 

surface with normal in J direction 
<j> = specific enthalpy or tracer gas concen

tration 

Subscripts 

j = jet conditions 
w = pertaining to wall 
°° = free-stream conditions 
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Table 1 Summary of conditions of the single-row test 
cases 

Source M S/D SJD ReD pjlpa 

Bergeles [4] 
Bergeles 
Eriksen [9] 
Eriksen 
Pedersen [10] 

30deg 
30deg 
35deg 
35deg 
35deg 

0.25 
0.5 
0.2 
0.5 
0.5 

2.667 
2.667 
3.0 
3.0 
3.0 

0.095 
0.095 
0.149 
0.149 
0.156 

3.3 X 104 

3.3 X 104 

4.4 X 104 

4.4 X 104 

1.9 X 104 

1.0 
1.0 
0.85 
0.85 
2.0 

U.07u. 

Fig. 3(a) Cross-stream velocity 

'"'"J;.'.0' 

^ 
\VJ 

["•/I 

100 

0 60 

Fig. 3(b) Axial velocity 

Fig. 3(c) Dimensionless temperature 

Fig. 3 Predicted distributions in the cross-stream plane at x/D = 5.2 for 
conditions corresponding to Eriksen's [9] M = 0.5 experiment 
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Fig. 4 Comparison of present predictions with local effectiveness data of 
Bergeles [4] for M = 0.25 
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80 

Fig. 5 Comparison with local effectiveness data of Eriksen [9] for M 
0.2 

80 K/Q 

Fig. 6 Comparison with local effectiveness data of Eriksen [9] for M = 
0.5 

associated computing time on an IBM 360/195 machine is about 20 
min. 

3 Applications 
Cases Studied. The cooling effectiveness data selected for as

sessment of the single-row predictions were obtained by Bergeles [4], 
Eriksen [9] and Pedersen [10], with those of the former being pre
sented here for the first time. Eriksen measured effectiveness by 
heating the jet air supply and mapping the surface temperature dis
tribution, while the other two investigators determined the surface 
concentration of a foreign gas introduced into the jet supply. Table 
1 summarizes the experimental conditions in terms of a, M, S/D, 6 \/D, 
Re# and pj/pa, where a and M(=pjVj/p„Um) are the angle and di
mensionless rate of injection, respectively. 

Predicted Flow Structure. Figures 3(a) to (c) show a small ex
tract of the detailed three-dimensional field predictions contained 
in [4], in this case corresponding to the conditions of Eriksen's M = 
0.5 experiments, although representative of other cases. The plots 
relate to a cross-stream plane 5.2D downstream of the hole centerline 
and were specifically chosen to reveal an important feature, namely 
the vortex structure induced by the injection process and the effects 
which it has on the distributions of stream wise velocity and (dimen
sionless) temperature: particularly noteworthy is the transport of 
"hot" mainstream fluid towards the surface and under the coolant 
jet, thus limiting its rate of lateral spread and causing the temperature 
maximum to lift off the surface. This behavior is detrimental to the 
performance of single-row arrangements, but turns out to have a 
beneficial effect in multiple-row ones, as is explained in [3]. 

Comparisons with Effectiveness Data. In the following para
graphs comparisons are described between the predictions and 
measurements of surface effectiveness, which is equivalent, in the 
present context, to the level of dimensionless temperature at the 
surface. The comparisons are grouped according to the injection rate, 
M. 

(a) M < 0.25. The predicted streamwise variations of the ef
fectiveness T) at various lateral locations for Bergeles' [4] experiments 
at M = 0.25 are shown in Pig. 4, along with the data. In the near-field 
region (x/D < 5.5), where the semi-elliptic method was employed, the 
agreement is good near the center and symmetry planes, but dis
crepancies of up to about 10 percent are observed at z/D = 0.53 and 
0.80. Further downstream, where the parabolic method was used, the 
agreement is good everywhere. 

Similar comparisons are made with Eriksen's [9] measurements 
for M — 0.2 in Fig. 5, although in this instance no near-field surveys 
were made. Reasonable agreement is obtained along z/D = 0.0 and 
0.5, and at all positions beyond x/D ~ 25, the maximum error being 
about 5 percent. Agreement is less satisfactory for x/D < 25 and z/D 
> 1.0, where q is underpredicted by up to 20 percent. However, the 
heat-transfer technique employed for these experiments is known to 
be subject to significant errors in regions of steep surface temperature 
gradients such as this, due to conduction within the test plate: al-
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Fig. 7 ( a ) Streamwise variation of centerline and spanwise-averaged ef
fectiveness 
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Fig. 7 Comparison with data of Pederson [10] for M = 0.5 
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Fig. 8 Comparison of present predictions with local effectiveness data of 
Bergeles [4] for M = 0.5 

though corrections may be made, the fact that r] is also small in the 
region compounds the error. It is best therefore in this instance to 
regard the cause of the discrepancies as being indeterminate. 

(b) M = 0.5. Eriksen's data for this blowing rate are displayed 
along with the predictions in Fig. 6. The general picture is much the 
same as for his M = 0.20 data and presumably the same comments 
apply, although the initial behavior along z/D — 0.0 is less well pre
dicted. 

The tracer-gas technique employed by Pedersen [10] precludes 
conduction errors and it is therefore of particular interest to note that, 
in the comparisons with his M = 0.5 data displayed in Fig. 7, the lat
eral variation shown in graph (fe) of ri is well predicted, in contrast 
to the behavior noted above. (The conditions are not, of course 
identical: in particular there is a more than two-fold difference in 
density ratio.) The adequacy of the predictions at other locations is 
evidenced by the good agreement obtained for the spanwise-averaged 
effectiveness j) in graph (a). 

Bergeles [4] also employed the tracer-gas technique, but as Fig. 8 
reveals, although the agreement obtained in the far-field region is 
almost as good as that for the Pedersen case, the discrepancies in the 

near field (for which only Bergeles provides data) are large, particu
larly just downstream of the hole. Furthermore, even this level of 
near-field agreement was procured only by adjusting the injectant 
velocity distribution in the calculations [4] such that the flow exited 
from the downstream half of the hole. The explanation for the sen
sitivity to the jet entry profile, which was not evidenced in the other 
cases, appears to lie in the fact that the boundary layer in Bergeles' 
experiments was much thinner than in the other cases (see Table 1) 
and therefore significantly altered the initial secondary flow profile 
from the assumed uniform distribution. Certainly there is experi
mental evidence that this effect does occur [1, 12] and tends to bias 
the flow distribution in the downstream direction. Although the 
sensitivity to the initial jet profile is found to diminish with down
stream distance from the hole, the accurate prediction of the near field 
may nonetheless be important due to the possibility of large thermal 
stresses arising from the steep surface temperature gradients 
there. 

4 Concluding Remarks 
From the overall performance of the procedure it can be concluded 

that it predicts rather satisfactorily the existing far-field data and 
therefore, if used with due caution, should be helpful in diagnosing 
shortcomings in existing cooling configurations and in evolving better 
ones. 

The study has shown however that as the boundary-layer thickness 
is decreased the assumptions of symmetrical jet exit conditions be
come increasingly untenable and this gives rise to significant errors 
in the predictions of the effectiveness distribution in the near field. 
It would appear that if these interaction effects are to be satisfactorily 
accounted for, it may be necessary to explore alternative approaches, 
including extending the domain of computation into the holes 
themselves. This is a conceptually simple matter, but time was not 
available in the present study to make the necessary changes to the 
computer code. 

A further shortcoming of the prediction method not revealed by 
the present comparisons, but evident in our single-hole injection 
studies published elsewhere [2], is a progressive deterioration in ac
curacy as M is increased beyond about 0.5. The errors are believed 
to stem in part from the local equilibrium assumptions inherent in 
the turbulence modelling and also from the inability of the semi-el
liptic procedure to properly simulate the zone of recirculation 
downstream of the hole, even with our patching modification incor
porated. It is likely that the turbulence-modelling errors can be re
duced by relaxing the quasi-equilibrium assumptions, although care 
should be taken to do this in a progressive fashion until the right 
compromise is struck between complexity (and hence cost) and ac
curacy. The semi-elliptic solution procedure is also capable of im
provement, by incorporating modifications to allow a local, fully el
liptic calculation of the recirculation bubbles. 
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A Study of Some Turbulence Models 
for Flow and Heat Transfer in Ducts 
of Annular Cross-Section 
A variable property finite-difference calculation procedure is used to predict turbulent 
flow and heat transfer parameters in annular passages. Predictions from several turbu
lence models are compared with measurements over a range of flow and thermal condi
tions. Of the models considered, one utilizing transport equations for turbulence kinetic 
energy and characteristic mixing length scale gave the best overall performance. The in
clusion of turbulence kinetic energy in the turbulence modeling was found not to be cru
cial for predicting isothermal flows or for predicting all parameters except the tempera
ture distribution for flows with heat transfer at Reynold numbers greater than 110,000. 

I n t r o d u c t i o n 
Annular flow geometries continue to be important in many engi

neering applications. These include propulsion systems, heat ex
changers, and fuel assemblies in nuclear reactors. Many of these de
vices operate under conditions in which property variations are ex
pected to influence greatly the velocity and temperature distributions. 
Although steady progress has been made in recent years in the pre
diction of turbulent flows, there are at present few, if any, prediction 
methods which have been tested extensively by comparison with 
experimental data for annular flows under variable property condi
tions. This may be due partly to the difficulties associated with ac
curately modeling the turbulent transport in flows where thermal 
boundary conditions can force velocity and temperature distributions 
to be quite dissimilar. 

Previous studies for the annular geometry include the constant 
property analyses of Kays and Leung [1], Ying [2], Lee [3], Quarmby 
and Anand [4], and Wilson and Medwill[5]. More recently, Heikel, 
et al. [6] utilized a Crank-Nicolson finite-difference procedure and 
the k-t turbulence model to predict flow and heat transfer parameters 
for the annular geometry under constant property assumptions. Other 
recent analyses utilizing finite-difference methods for annular flows 
without heat transfer include those of Hanjalic [7] and Sharma, et al. 
[8]. A more detailed review of research in this problem area can be 
found in [9]. 

The present study was initiated in response to the need which is 
believed to exist for further development and evaluation of prediction 
schemes for the annular geometry, particularly for flows in which 
property variations may be significant. The objectives were to develop 
a finite-difference procedure which could readily handle the variety 
of possible hydrodynamic and thermal boundary conditions which 
occur in annular flows with heat transfer, and to identify the simplest 
turbulence models which would give satisfactory agreement with 
measurements over a range of flow and thermal conditions. An earlier 
paper [10] presented a few preliminary comparisons with experi
mental data utilizing an L-equation turbulence model which employs 
a transport equation in ordinary differential form for a length scale. 
Although velocity profiles and Stanton numbers were in reasonable 
agreement with measurements, a need for improvement in the pre
dicted temperature profiles was noted. In the present paper, predic
tions from several turbulence models are compared with experimental 
data. Particular attention is given to the way in which turbulence 
modeling details influence the predicted temperature distribution 
and to the performance of the predictions under variable property 
conditions. Details of the numerical procedures used are reported 
separately in [9] and [11]. 

Contributed by the Heat-Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
October 29,1979. 

Analysis 
Governing Equations. With boundary layer (thin-shear layer) 

assumptions, the governing equations for an axisymmetric, steady 
turbulent flow can be written as 
Continuity: 

—(pu) + -—(rpv) •• 
dx r dy 

Momentum: 

du du 1 d 
pu 1- pv •— = 

dx dy r dy 

du 
P- — • 

dy 

0 

pu v 
dp 

dx 

(1) 

(2) 

Energy: 

„ oT „ ar i s 
ptpU h pCpD — -̂ = 

dx dy r dy dy 
pCpv'T' 

du — , 
p, — - pu'v' 

dy 

du 

dy dx 
(3) 

Conventional no-slip boundary conditions apply for the velocities, 
while either the temperatures or heat flux may be specified at the 
walls. In the above, 0 = {pv + p'v')/p. The terms —pu'v' and 
—pCpv'T' appearing in equations (2) and (3) represent the apparent 
turbulent shear stress and turbulent heat flux, respectively, and must 
be modeled using empirical information. 

Turbulence Modeling. The simplest and currently most common 
modeling approach follows a concept originally advanced by 
Boussinesq in 1877—that the turbulent shearing stress can be related 
to the rate of mean strain as 

du 
-pu v = UT — 

dy 
(4) 

where UT is an apparent turbulent (or, eddy) viscosity yet to be de
fined. The implied assumption in equation (4) is that the stress-strain 
law for time-averaged turbulent flows is of the same form as that for 
a Newtonian fluid in laminar motion. The term — pCpv'T' represents 
an additional transport of heat which is caused by the turbulent 
motion and can be modeled by assuming that this transport is of 
diffusive type, so that the form of Fourier's law applies, i.e., 

dT 
-pCpv'T'=\T — 

<>y 
(5) 

where XT is an apparent turbulent (or, eddy) conductivity which can 
be related to turbulent viscosity UT by defining a turbulent Prandtl 
number such as 

P r T
: MTC P 

AT 
(6) 

In general, the turbulent Prandtl number may vary throughout the 
flow, although quite accurate results usually can be obtained by using 
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a constant value of Prr- A constant value of Pry = 0.9 was used for 
all predictions of this paper. All turbulence models to be evaluated 
in the present paper follow the general forms indicated by equations 
(4-6). 

Length-Scale Transport Equation (Model A). A turbulence 
model utilizing a one-dimensional transport equation for the char
acteristic mixing length scale in the central part of the flow was pro
posed in [10]. The model is based on the mixing length hypothesis 
whereby 

Mr = p£* 

(7) 

(8) 

For the regions closest to the walls, £ is taken as 

£i = Kyw[l - exp (-yt/A+)] 

Here K is the von Karman constant taken as 0.41 and A+ is a damping 
constant evaluated as 26 in the present study unless otherwise indi
cated. Away from the walls (in the outer region), the mixing length 
was evaluated as 

£o = CiL (9) 

where L was determined from the solution to the transport equa
tion, 

dh 
um—-= C 2 |u | 

ax m (10) 

The switch from £{ to £0 in equation (7) is made at the distance from 
the walls where £t first becomes equal to £0 . 

In some thin shear flows near equilibrium, L is proportional to 5 
(db/dx r^dL/dx) and equation (9) can be evaluated as £0 = 0.0895. 
Equation (10) then becomes unnecessary. This is not true in general, 
however, since L can be expected to depend more on the large eddy 
structure and its characteristic relaxation time than merely on the 
width of the shear layer. Equation (10) can be developed as a one-
dimensional specialization of a more general transport equation for 
length scale (see [9]), such as the one proposed by Bradshaw [12]. The 
constants Ci and Ci were evaluated as 0.12 and 1.09, respectively, by 
referring to experimental measurements. 

The mixing length given by equation (9) will eventually become 
discontinuous at the radius of maximum velocity after the boundary 
layers growing on the walls have merged as they tend towards the fully 
developed state. To overcome this, an average of the outer length scale 
predicted for the flow along each wall was used for the central core 

region after the shear layers had merged. As the flow becomes fully 
developed (dL/dx = 0) equation (10) gives L = 5. Then from equation 
(9) and the fact that the values of L are averaged for the two walls, we 
have, 

£*• 
n (Li.+ L2) _ 5i + fr; 
c i Z. = L i — Z — (11a) 

After the boundary layers have met, 5i + 82 = ri — ri , that is, the two 
shear layers fill the annulus; so the mixing length in the outer region 
for fully developed flow will be given as 

to = Ci(r2 - n)/2 (lib) 

This same turbulence model (with adjustment for the use of dif
ferent definitions of shear layer width) has been found to give better 
predictions of separating external flows than obtained from purely 
algebraic models [13]. Further details on Model A can be found in 
[10]. 

Bridging (Model B). It should be noted that after the boundary 
layers have merged, equation (7) will give zero turbulent viscosity at 
the radius of maximum velocity (du/dy = 0). Equations (5) and (6) 
imply zero turbulent conductivity at that point, which is unrealistic 
when asymmetric thermal boundary conditions exist. Use of this 
model will likely lead to an inaccurate prediction of the temperature 
profile. This shortcoming, however, is not associated only with Model 
A; Bradshaw's shear layer interaction model (see [14]), for example, 
and many others will also predict zero turbulent heat transport at the 
radius of zero shear. 

An improvement in the predicted temperature distribution has 
been noted for fully developed flow when the turbulent viscosity (thus, 
the turbulent conductivity) profile predicted by equation (7) is 
"bridged." (see Fig. 12) just by assuming a linear distribution between ' 
the peaks in pr which occur near each wall. Similar schemes for 
treating the eddy viscosity near the point of zero velocity gradient in 
the wall mixing zone of a wall jet have been suggested by Pai and 
Whitelaw [15] and by Dvorak [16]. In the latter study, a cosine fairing 
was used for the eddy viscosity. No studies of this type have been 
noted to date for annular flows. 

k-L Model (Model C). A more general remedy for the problem 
of predicting unrealistically small values of pr (thus, XT) in the 
central core can be provided by utilizing the Prandtl-Kolmogorov 
formulation, 

pT = Cppk^H (12) 

where k is the turbulence kinetic energy per unit mass. A modeled 
form of the transport equation for k is [17]: 

• N o m e n c l a t u r e -

A = Nusselt number correlation constant 
A+ = van Driest damping constant 
C = Nusselt number correlation constant 
Ci, C2, Co, Cp = empirical constants or 

functions 
C/ = overall, skin-friction coefficient for an

nulus, 2 [T 2 + r*Ti]/[pu'l (1 + r*)] 
Cp = specific heat 
Dji = hydraulic diameter, 2(r2 — n ) 
k = turbulence kinetic energy per unit 

mass 
t = mixing length 
(i = mixing length in the wall regions 
t0 = mixing length in the outer regions of the 
__ shear layers 
to = average of the outer region mixing 

lengths 
L = turbulent length scale 
Nu = Nusselt number, qwDh/(Tw - T0)\B 

P = static pressure 
Pr£ = Prandtl number for diffusion of k 

P r r = Prandtl number for turbulent diffu
sion of heat 

q = Heat flux 
r = radial coordinate 
r* = radius ratio, r i / r 2 

Re = Reynolds number, pUbDh/p 
St = Stanton number, qw/pbUbCp(To. — 

Tb) 
T = absolute temperature 
u = axial velocity 
ur = friction velocity, \/TW/P 
v = radial velocity 
x = coordinate along the annulus 
y = coordinate normal to the inner wall, r — 

yw = distance from the wall, | r - rw | 
yt, = dimensionless distance from the wall, 

ywUT/v 

/3 = coefficient of thermal 

expansion, 
1 dp 

pdT 

b = boundary layer thickness 
e = dissipation rate of turbulence kinetic 

energy 
X = thermal conductivity 
\T = turbulent conductivity 
p. = dynamic viscosity 
PT = turbulent viscosity 
v = kinematic viscosity 
p = density 
T = shear stress 

Subscripts 
b = bulk conditions 
m = radius of maximum velocity 
o = bulk value at the inlet 

Superscripts 

( ) = time mean quantity 
(~ ) ' = fluctuation component of a quantity 
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dk dk 
pu h pv : 

dx dy 
r dy r X Pr J dy 

•cDPk*iye (13) 

Equation (13) is valid only where flow is fully turbulent. For that 
reason, the boundary condition for equation (13) is not specified at 
the walls where flow is largely influenced by laminar viscosity, but 
instead, is specified at some distance from the walls. The boundary 
conditions employed were 

k(x,yt) = -pu'v'(x,yi)/CDW (14) 

A value of y j » 60 has been used successfully. This inner boundary 
condition for k follows from a specialization of equation (13) under 
the usual assumptions that in the fully turbulent region near the wall, 
the generation and dissipation terms balance one another and 
Prandtl's mixing length formula (equation (7)) holds in that region. 
The length scale needed in equation (13) is provided as indicated for 
Model A. The present results were obtained using Cp = 0.548, Co = 
0.164, and Prfc = 1.47. 

Method of Solution. The governing equations were solved nu
merically by a finite-difference procedure using the turbulence 
modeling assumptions indicated above. The system of equations is 
parabolic, permitting the solution to be marched in the main flow 
direction. An explicit three-level scheme of the DuFort-Frankel type 
was employed. Between 70 and 100 cross-stream grid increments were 
used. No case reported here required more than three minutes of CPU 
time on an IBM 360/65 computer. Further details of the calculation 
method are described in [9] and [11]. 

R e s u l t s 
Hydrodynamic Results. It is reasonable to require that turbu

lence models appropriate for annular flows will give good predictions 
for a parallel wall (high-aspect ratio channel) duct. The parallel wall 
condition was simulated in the present computational scheme by 
utilizing r* - 0.99. Figure 1 compares the predictions of Models A and 
B with the measurements of Dean [14] and Byrne, et al. [18] for the 
centerline velocity development in a high-aspect ratio rectangular 
duct. The proposed length scale model predicts the velocity overshoot 
in fair agreement with Dean's data. The overshoot in the velocity is 
a consequence of the interaction between the shear layers; this was 
also observed in the data of Barbin and Jones [19] for pipe flow. A 
sudden drop in the centerline velocity is observed when bridging 
(Model B) is used immediately upon merger of the two wall-boundary 
layers. It can be concluded, therefore, that linear bridging is not ap
propriate to predict details of hydrodynamically developing flow. It 
will be shown later that for fully developed flow, it is a good approx
imation. Predictions based on two simple mixing length models are 
also shown in Fig. 1. These simpler models do not provide satisfactory 
agreement with the data after the wall-boundary layers merge. The 
model of Pletcher and Nelson [20], in which a switch is made from £0 

= 0.089 to the empirically based distribution proposed by Nikuradse 
(see [21]) for developed flow, gives a satisfactory fully developed value 
for um/uh but does not predict correctly the details of the overshoot 
region. 

Figure 2 shows predictions of velocity development at four different 
cross stream locations (including the centerline) in a parallel wall duct. 
The experimental data of Byrne, et al. [18] and predictions of the k-e 
model as reported by Stephenson [22] are also given. The present 
predictions generally provide the best agreement with the experi
mental data. It can be concluded that nonmonotonic development 
of centerline velocity in a plane duct is well predicted by the proposed 
length scale transport model. Other parameters such as the momen
tum and displacement thicknesses also develop nonmonotonically 
in turbulent channel flow. These also have been found to be well 
predicted by Model A [9]. 

Good results have also been observed in predicting hydrodynamic 
flow development in a high-aspect ratio rectangular channel using 
a turbulence kinetic energy model (Model C). Figure 3 compares 
predictions from Model C with the velocity distribution measured 
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Fig. 1 Predicted development of maximum velocity in an annuius (r* = 0.99, 
Re = 2 X 105) compared with measurements for a parallel wall duct 
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Fig. 2 Predicted velocity development compared with measurements in the 
entrance region of an annuius (r* = 0.99) 
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Fig. 3 Predicted velocity profiles in an annuius (r* = 0.99) compared wilh 
the measurements of Comte-Bellot [23] obtained in a plane duct 
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by Comte-Bellot [23]. A free stream turbulence level of 0.02 percent 
was specified at the inlet in the predictions. The present predictions 
compare very well with the data. Calculations were also made using 
Model A, but these predictions (which are not shown) were too close 
to those of Model C to include on the figure. It can be concluded that 
for hydrodynamic development, at least, employing a turbulence ki
netic energy equation has no real advantage, and that the length scale 
transport model predicts the flow development with sufficient ac
curacy. The turbulence kinetic energy profiles predicted by Model 
C were shown in [9] to be in good agreement also with the measure
ments in [23]. 

Figure 4 compares the velocity development predicted by Model 
A (again, Model C gave nearly identical results) with the measure
ments and k-e model predictions reported by Heikal, et al. [6] for an 
annular passage with r* - 0.25. Predictions of both models agree fairly 
well with the measurements, except very near the inlet. In Fig. 5, ve
locity profile predictions are compared with the experimental data 
of Ball and Azer [24] for fully developed flow in an annulus (r* = 0.25). 
The predictions of model B seem to compare slightly better with the 
experimental data than those of model A. 

Another comparison between the predictions of Models A, B, and 
C is given in Table 1 where the predicted fully developed shear stresses 
at the inner and outer wall are compared with the experimental data 
of Kuzay [25] taken in an annulus of radius ratio 0.556. The force 
balance measurements were obtained from a force balance calculation 
using the measured pressure drop and radius of zero stress. The 
present predictions are closest to the values measured by the Preston 
tube. 

The momentum transfer in turbulent shear layers is strongly af
fected by occurrences very near the wall and if these are modeled 
appropriately, the engineering parameters can be predicted with 
reasonable accuracy even though the outer layer is modeled more 
approximately. The present models should predict annular flow 
reasonably well as long as the velocity distribution near the inner and 
outer wall can be described by a logarithmic law, such as u+ = 1/K log 
y+ + B. Figure 6 shows the predicted inner and outer wall velocity 
profiles drawn on "law of the wall" coordinates, as compared with the 
results of Lawn and Elliot [26] for r* = 0.396. At this radius ratio, the 
predictions agree quite well with the data and seem to suggest that 
a universal logarithmic region exists near each wall. However, there 
is considerable controversy as to whether this law holds for very small 
radius ratios. Rehme [27] shows that the law holds for both walls with 
universal constants. On the other hand, the results of Lawn and Elliot 
[26] indicate that for radius ratios as small as 0.088, the velocity dis
tribution near the inner wall does not match the law of the wall with 
the usual constants. Even then, only B seems to be affected appre
ciably. As indicated in Fig. 7, it was possible to reproduce the Lawn 
and Elliot results for r* = 0.088 using Model A by taking A+ = 26r*01 

in the van Driest damping function. This is consistent with the sug
gestion of Huffman and Bradshaw [28] that for axisymmetric 
boundary layers, only the viscous sublayer is influenced significantly 
by large transverse curvature. The change in A+ causes a shift in the 

Table 1 Predicted inner and outer wall shear stresses 
in an annulus (r* = 0.556) as compared to the data of 

Kuzay [25] 

Method 

Measurements 
Re = 33156 

Force balance 
Clauser plot 
Preston tube 

Predictions 
Re = 32285 

Model A 
Model B 
Model C 

Newtons/m2 

0.1968 
0.2077 
0.2222 

0.2204 
0.2226 
0.2189 

T2 

Newtons/m2 

0.1798 
0.1626 
0.1926 

0.1863 
0.1913 
0.1857 

Effective stress 
T 2 + r*Ti 

1 + r* 
Newtons/m2 

0.1860 
0.1790 
0.2033 

0.1987 
0.2027 
0.1977 

1.4 

1.3 

1.2 
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1.0 
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Fig. 4 Predicted velocity development in an annulus ( r * = 0.25) compared 
with the measurements of Heikal, et al. [6] 
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Fig. 6 Velocity distribution on law of the wall coordinates ( r * = 0.396) 
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predicted velocity profiles corresponding roughly to a change in the 
value of B in any logarithmic law fit to the predicted results. It is in
teresting to note that Hanjalic [7] also modified B for the inner wall 
when using a three-equation model for predicting the Lawn and Elliot 
results. 

Table 2 gives the values predicted for the radius of zero shear and 
the ratio of shear stesses for the same annulus using the transverse 
curvature correction. The present predictions are for Re = 2.37 X 106. 
The results of Lawn and Elliot [26] are also given in the table. It should 
be noted that the radius of zero shear (r„) and that of maximum ve
locity (rm) may not be the same. The experimental results of [26] show 
that for r* = 0.088, rm/r0 = 1.05 and that rjr0 — 1 as r* — 1. The 
present turbulence models and for that matter any model based on 
the Boussinesq assumption relating the stress to the rate of mean 
strain cannot differentiate between these two radii whether or not /AT 
is determined by an algebraic expression or by employing one or more 
transport equations for turbulence quantities. 

Thermal Results. Experience to date with Models A, B, and C 
indicates that all three models give predictions for Stanton numbers 
which are within 3 percent for Reynolds numbers greater than about 
110,000. The differences between the three predictions are more ev
ident at lower Reynolds numbers being as much as 8 percent for Re 
= 20,000. This is illustrated in Fig. 8 where Stanton number predic
tions of Models A and B are compared with the measurements of 
Furber, et al. [29] for Re = 20,000 and r* = 0.68. 

In Table 3, fully developed Stanton numbers obtained for an an
nulus (r* = 0.556) with the outer wall heated are given. It can be seen 
that the difference between the predictions of Models A and B reduce 
with Reynolds number and that the prediction of Model C lies be
tween that of Model A and B. The differences in the predictions of 
the three models are more evident in the temperature profiles near 
the middle of the annulus. This will be illustrated later. 

In Fig. 9, the predicted Stanton numbers obtained from Model A 
for the entrance region of a parallel plate duct (r* = 0.99) heated with 
constant heat flux on one side are compared with the data of Byrne, 
et al. [18]. Heating started a short distance downstream of the inlet 
in the experiments (taken to be x/Dh = 0.3 in the predictions). The 
agreement appears to be quite good. 

The predicted effect of property variations on Nusselt number is 
indicated in Fig. 10 for Model A, in which the flow of air is through 
an annulus of r* = 0.5 with the inner wall heated, giving rise to ratios 
of Tw to T0 up to 4.0. The flow was assumed to be hydrodynamically 
fully developed at the inlet to the heated section. The results shown 
were obtained 56.5 hydraulic diameters from this inlet and are com
pared with the measurements of Dalle Donne and Meerwald [30] for 
8 X 104 < Re6 < 2 X 106. Dalle Donne and Meerwald proposed to 
correlate their measurements of local heat transfer coefficient for r* 
= 0.5 using a form, 

u a 5 . 5 l o g y + 5 . 4 5 

PREDICTION WITHOUT CURVATURE 
CORRECTION 

PREDICTION WITH CURVATURE 
CORRECTION 

DATA OF LAWN AND ELLIOT 

o Re = 2 . 3 7 x 1 0 5 

a Re - 2 . 0 1 x 1 0 5 

I I I I I I I I I I I I I I I 

10 ,000 

Fig. 7 Velocity distribution near the inner wall of an annulus (r* = 0.088); 
prediction for Re = 2.37 X 10s 
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Fig. 8 Local Stanton number variation for hydrodynamically developed flow 
In an annulus (r* = 0.68); inner wall heated 
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Fig. 9 Predicted Stanton number distribution compared with the measure
ments of Byrne et al. [18] for hydrodynamically developing flow in an annulus 
(r* = 0.99) 

Table 2 Predicted (Model A with curvature 
correction) and measured [26] values of some 

parameters for an annulus with r* = 0.088 

Method 

Measure
ments 

Predictions 

Is. 

0.362 ± 0.0031 

0.3623 

II 
Tl 

1.61 

1.603 

2TI 

pulCf 

1.532 ± 0.028 

1.529 

2T 2 

pu\Cf 

0.952 ± 0.01 

0.953 

Table 3 Predicted fully developed Stanton numbers 
for an annulus (r* = 0.556) with the outer wall heated 

Model 

A 
B 
C 

Re = 32285 

0.002907 
0.003103 
0.002938 

St 
Re = 64131 

0.002514 
0.002661 
0.002657 

0.03 

0.02 

0.015 -

0.01 

c = 

"7" 
- c = -0 

• -0.31 

" " ^ 
2 

1 

D 

O 
PREDICTIONS (MODEL A) 

DATA OF DALLE 
MEERWALD 

1 1 

DONNE, AND 

1 
1.0 1.5 2.0 2.5 3.0 4.0 

Fig. 10 Correlation of Nusselt number with wall-to-lnlet temperature ratio 
for flow of air through an annulus (r* = 0.5), x/Dh = 56.3 
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Values of A = 0.0186 and C = —0.2 were suggested. The present pre
dictions of Model A suggest A « 0.0204 and C = -0.31 as indicated 
in Fig. 10. This slight discrepancy between predictions and mea
surements was not expected in light of the excellent agreement ob
served earlier [10] between the predictions of Model A and the data 
of Furber, et al. [29] for nitrogen heated over a similar range of tem
perature ratios. From [30] it can be noted that the preponderance of 
experimental data available for annular passages would suggest that 
A in equation (14) should be closer to 0.02 (rather than 0.0186), for 
which the exponential parameter of -0.2 would be inappropriate. This 
suggests that the data of Dalle Donne and Meerwald, while perhaps 
correct, are slightly inconsistent with other available data for annular 

1.0 

As indicated previously, all three turbulence models evaluated gave 
Stanton numbers which agreed very closely at moderate to high 
Reynolds numbers, but which differed noticeably in the predicted 
temperature distribution in the central portion of the annulus. Figure 
11 shows the predicted temperature profiles at 14.4 hydraulic diam
eters downstream of heating compared to the measurements of Ball 
and Azer [24] taken in an annulus (r* = 0.25) with uniform heat flux 
at the inner wall and with an insulated outer wall. The temperature 
profile predicted by Model A does not compare well with the mea
surements, but is seen to be improved by the use of bridging (Model 
B). There should be no doubt that bridging is only an approximation 
used to improve the thermal predictions. The idea of bridging is 
demonstrated in Fig. 12 which also contains experimental data for 
turbulent viscosity reported by Ball and Azer [24] and Jonsson and 
Sparrow [31]. The experimental data show that the turbulent viscosity 
does decrease, but remains non-zero near the radius of maximum 
velocity. The reason that the bridging model provides improved 
thermal results is as follows. 

Linear bridging is used in order to obtain a non-zero turbulent 
conductivity (near the radius of maximum velocity) which is calcu
lated by \T = tirCplVir- A constant value of Prr = 0.9 was used in 
the present predictions. Experimental results of Kuzay [25] and Ball 
and Azer [24] show that Prr varies throughout the flow and that it 
reaches a small value at the radius of maximum velocity (0.4 ~ 0.6 
instead of 0.9). So the use of a rather elevated value of HT with a 
"large" value of Prr at and near the radius of maximum velocity 
perhaps results in the same XT which would be obtained if the actual 
(experimental) value of HT with the observed value of Pry had been 
used. 

Resources have not permitted the computation of every case with 
all three models. Whenever all three models have been used, predic
tions of temperature profiles by Model C have fallen between those 
of Models A and B. 

Figure 13 shows a comparison between the temperature profiles 
predicted by all three models and the measurements of Kuzay [25], 
in which the outer wall was heated. In this experiment, an unheated 
length of 15 hydraulic diameters was followed by a heated length of 
36 diameters. It can be seen from the figure that Model A predicts an 
unrealistically large temperature gradient in the region of maximum 
velocity because of the very small eddy conductivity predicted there. 
Both models B and C offer improvements to the predictions, but 
neither prediction is in really good agreement with the measure
ments. 

Conclusions 
1 The accurate prediction of confined turbulent flow development 

provides an interesting test to turbulence modeling. Flow parameters, 
including the maximum velocity, do not approach their fully devel
oped value monotonically, but rather overshoot the asymptotic values. 
This behavior is not predicted by the simplest algebraic turbulence 
models, although algebraic models have been modified to accommo
date this effect [32,33]. Use of a simplified transport equation for a 
length scale in the turbulence modeling resulted in predictions of these 
phenomena which are at least as accurate as those provided by the 
k-e two-equation model. 

2 Hydrodynamic features of annular flows are predicted quite 
accurately by both Models A and C. Model B does not predict the 
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overshoot p h e n o m e n a adequate ly , b u t provides accura te predic t ions 

after t h e flow h a s become hydrodynamica l ly fully developed. 

3 All t h r e e mode l s were found to p red ic t wi th in 8 p e r c e n t of t h e 

s a m e value for S t a n t o n n u m b e r in all cases a n d wi th in 3 p e r c e n t for 

Reyno lds n u m b e r s g rea te r t h a n 1.1 X 106. T h e s e p red ic t ions were 

general ly in good a g r e e m e n t wi th m e a s u r e d values of S t a n t o n n u m 

bers . Differences were a p p a r e n t , however, in t h e p red ic t ed t e m p e r 

a t u r e profi les, w h e r e M o d e l s B a n d C were found t o p rov ide p red i c 

t ions somewha t more in line wi th measu remen t s t h a n those of Mode l 

A. Overal l , M o d e l C a p p e a r e d t o p red i c t m o s t rel iably all aspec ts of 

t h e flow ( h y d r o d y n a m i c a n d t h e r m a l ) , a l t hough Mode l A was found 

t o be sufficiently accura te for i so thermal cases. 

4 P r o p e r t y var ia t ions were shown to have a significant effect on 

t h e h e a t t ransfer coefficient. T h e p r e s e n t ca lcula t ion m e t h o d was 

found t o p red i c t t he se effects in reasonable ag reemen t w i th exper i 

m e n t a l m e a s u r e m e n t s , especially w h e n t h e add i t iona l compar i sons 

shown in [10] are t aken in to account. T h e predict ions suggest t h a t t h e 

N u s s u l t n u m b e r can be cor re la ted using a wal l - to- inlet t e m p e r a t u r e 

ra t io ra ised t o t h e e x p o n e n t of —0.31. 

A c k n o w l e d g m e n t 
T h i s work was s u p p o r t e d b y t h e Eng inee r ing R e s e a r c h I n s t i t u t e 

of Iowa S t a t e Univers i ty t h r o u g h funds p rov ided by t h e N a t i o n a l 

Science Founda t ion unde r Gran t s E N G 74-22193 and E N G 78-12901. 

P a r t of t h i s work was d o n e while t h e a u t h o r s were visi t ing in t h e D e 

p a r t m e n t of Aeronautics , Imperia l College, London. T h e authors wish 

to express their appreciat ion to Professor Pe te r Bradshaw of Imperia l 

College for his coopera t ion a n d in te res t . 

R e f e r e n c e s 
1 Kays, W. M., and Leung, E. Y., "Heat Transfer in Annular Passages— 

Hydrodynamically Developed Turbulent Flow with Arbitrarily Prescribed Heat 
Flux," International Journal of Heat and Mass Transfer, Vol. 6, 1963, pp. 
537-557. 

2 Ying, W. M., "A Theoretical Method of Predicting Heat Transfer and 
Friction Factor in Annuli with Roughened Core Tubes," M.S. Thesis, Imperial 
College, London, 1967. 

3 Lee, Y., and Park, S. D., "Developing Turbulent Flow and Heat Transfer 
in Concentric Annuli," Transactions of the Canadian Society for Mechanical 
Engineers, Vol. 1,1972, pp. 13-24. 

4 Quarmby, A., and Anand, R. K., "Turbulent Heat Transfer in the 
Thermal Entrance Region of Concentric Annuli with Uniform Wall Heat Flux," 
International Journal of Heat and Mass Transfer, Vol. 13, 1970, pp. 395-
511. 

5 Wilson, N. W., and Medwell, J. 0., "An Analysis of Heat Transfer for 
Fully Developed Turbulent Flow in Concentric Annuli," ASME JOURNAL OF 
H E A T T R A N S F E R , Vol. 90,1968, pp. 43-50. 

6 Heikal, M. R. F., Walklate, P. J., and Hatton, A. P., "The Effect of Free 
Stream Turbulence Level on the Flow and Heat Transfer in the Entrance Re
gion of an Annulus," International Journal of Heat and Mass Transfer, Vol. 
20,1977, pp. 763-771. 

7 Hanjalic, K., "Prediction of Turbulent Flow in Annular Ducts with 
Differential Transport Model of Turbulence," Wdrmeund Stoffubertragung, 
Vol. 7,1974, pp. 71-78. 

8 Sharma, B. I., Launder, B. E. and Scott, C. J., "Computation of Annular, 
Turbulent Flow with Rotating Core Tube," ASME Journal of Fluids Engi
neering, Vol. 98,1976, pp. 753-758. 

9 Malik, M. R., "Prediction of Laminar and Turbulent Flow Heat Transfer 
in Annular Passages," Ph.D. Thesis; Department of Mechanical Engineering, 
Iowa State University, Ames, 1978. 

10 Malik, M. R. and Pletcher, R. H., "Computation of Annular Turbulent 

Flows with Heat Transfer and Property Variations," Heat Transfer 1978, 
Proceedings of the Sixth International Heat Transfer Conference, Vol. 2, 
Hemisphere Publishing; 1978, pp. 537-542. 

11 Malik, M. R. and Pletcher, R. H., "Calculation of Variable Property Heat 
Transfer in Ducts of Annular Cross-Section," Numerical Heat Transfer, Vol. 
3,1980, pp. 241-257. 

12 Bradshaw, P., "Turbulence Research—Progress and Problems," Pro
ceedings of the 1976 Heat Transfer and Fluid Mechanics Institute, Stanford 
University Press, 1976, pp. 128-139. 

13 Pletcher, R. H., "Prediction of Incompressible Turbulent Separating 
Flow," ASME Journal of Fluids Engineering, Vol. 100,1979, pp. 427-433. 

14 Dean, R. B., "Interaction of Turbulent Shear Layers in Duct Flow," Ph.D 
Thesis, London University, 1972. 

15 Pai, B. R., and Whitelaw, J. H., "The Prediction of Wall Temperature 
in the Presence of Film Cooling," Heat Transfer Section Report EHT/TN/A/22, 
Imperial College, 1970. 

16 Dvorak, F. A., "Calculation of Turbulent Boundary Layers and Wall 
Jets Over Curved Surfaces," AIAA Journal, Vol. 11,1973, pp. 517-524. 

17 Launder, B. E., and Spalding, D. B., Mathematical Models of Turbu
lence, Academic Press, New York, 1972. 

18 Byrne, J., Hatton, A. P. and Mariott, P. G., "Turbulent Flow and Heat 
Transfer in the Entrance Region of a Parallel Wall Passage," Proceedings of 
the Institute of Mechanical Engineers, Vol. 184,1969-70, pp. 697-712. 

19 Barbin, A. R., and Jones, J. B., "Turbulent Flow in the Inlet Region of 
a Smooth Pipe," ASME Journal of Basic Engineering, Vol. 85,1963, pp. 29-
34. 

20 Pletcher, R. H., and Nelson, R. M., "Heat Transfer to Laminar and 
Turbulent Flow in Tubes with Variable Fluid Properties," Heat Transfer 1974, 
Proceedings of the Fifth International Heat Transfer Conference, Vol. 2,1974, 
pp. 146-150. 

21 Schlichting, H., Boundary Layer Theory, 6th ed., McGraw Hill, New 
York, 1968, p. 568. 

22 Stephenson, P. L., "A Theoretical Study of Heat Transfer in Two-
Dimensional Turbulent Flow in a Circular Pipe and Between Parallel and Di
verging Plates," International Journal of Heat and Mass Transfer, Vol. 19, 
1976, pp. 413-423. 

23 Comte-Bellot, G., "Turbulent Flow Between Parallel Walls," Ph.D. 
Thesis, University of Grenoble, France, 1963 (also available as ARC 31 609). 

24 Ball, H. D., and Azer, N. Z., "Experimental Investigation of Eddy Dif-
fusivities of Air in Turbulent Annular Flow," Proceedings of the 1972 Heat 
Transfer and Fluid Mechanics Institute, Stanford University Press, 1972, pp. 
19-38. 

25 Kuzay, T. M., "Turbulent Heat and Momentum Transfer Studies in an 
Annulus with Rotating Inner Cylinder," Ph.D. Thesis, University of Minnesota, 
1973. 

26 Lawn, C. J., and Elliot, C. J., "Fully Developed Turbulent Flow Through 
Concentric Annuli," C.E.G.B. Report RD/B/N1878, Berkeley Nuclear Lab., 
England, 1971. 

27 Rehme, K., "Turbulence Measurements in Smooth Concentric Annuli 
with Small Radius Ratios," ASME Journal of Fluid Mechanics, Vol. 72,1975, 
pp. 189-206. 

28 Huffman, G. D., and Bradshaw, P., "A Note on von Karman Constant 
in Low Reynolds Number Turbulent Flows," ASME Journal of Fluid Me
chanics, Vol."53,1972, pp. 45-60. 

29 Furber, B. N., Appleby, G. G., and Facer, R. I., "Forced Convection Heat 
Transfer in an Annulus," Heat Transfer 1974, Proceedings of the Fifth Inter
national Heat Transfer Conference, Vol. 2,1974, pp. 155-159. 

30 Dalle Donne, M., and Meerwald, E., "Heat Transfer and Friction 
Coefficients for Turbulent Flow of Air in Smooth Annuli at High Tempera
tures," International Journal of Heat and Mass Transfer, Vol. 16,1973, pp. 
787-809. 

31 Jonsson, V. K., and Sparrow, E. M., "Turbulent Diffusivity for Mo
mentum in Concentric Annuli," ASME Journal of Basic Engineering, Vol. 88, 
1966, pp. 550-552. 
' 32 Emery, A. F., and Gessner, F. B., "The Numerical Prediction of the 

Turbulent Flow and Heat Transfer in the Entrance Region of a Parallel Plate 
Duct," ASME J O U R N A L O F H E A T T R A N S F E R , Vol. 98,1976, pp. 594-600. 

33 Cebeci, T., and Chang, K. C , "A General Method for Calculating Mo
mentum and Heat Transfer in Laminar and Turbulent Duct Flows," Numerical 
Heat Transfer, Vol. 1,1978, pp. 39-68. 

152 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



H. W. Coleman 
Mechanical Engineering Department, 

Mississippi State University, 
Mississippi State, MS 39762, 

Mem. ASME 

R. J. Moffat 
Mechanical Engineering Department, 

Stanford University, 
Stanford, CA 94305, 

Mem. ASME 

W. M. Kays 
Dean, School of Engineering, 

Stanford University, 
Stanford, CA 94305, 

Fellow ASME 

Heat Transfer in the Accelerated 
Fully Rough Turbulent Boundary 
Layer 
Heat transfer behavior of a fully rough turbulent boundary layer subjected to favorable 
pressure gradients was investigated experimentally using a porous test surface composed 
of densely packed spheres of uniform size. Stanton numbers and profiles of mean temper
ature, turbulent Prandtl number, and turbulent heat flux are reported. Three equilibrium 
acceleration cases (one with blowing) and one non-equilibrium acceleration case were 
studied. For each acceleration case of this study, Stanton number increased over zero 
pressure gradient values at the same position or enthalpy thickness. Turbulent Prandtl 
number was found to be approximately constant at 0.7-0.8 across the layer, and profiles 
of the non-dimensional turbulent heat flux showed close agreement with those previously 
reported for both smooth and rough wall zero pressure gradient layers. 

Introduction 
Surface roughness can have profound effects on the structure and 

behavior of a turbulent boundary layer. In general, Stanton numbers 
and skin friction coefficients are greater in a turbulent boundary layer 
influenced by roughness than in a smooth wall layer at the same flow 
conditions. This enhancement of heat transfer (and wall shear) be
cause of roughness effects must be understood and accounted for in 
the analysis and design of systems naturally influenced by roughness. 
In addition, an understanding of roughness effects can be used to 
advantage in the design of systems where enhanced heat transfer is 
desirable. 

An experimental study of the effects of roughness on the fluid dy
namics and heat transfer in the turbulent boundary layer has been 
in progress at Stanford for the past several years. Results of this in
vestigation for zero pressure gradient flows have been reported pre
viously [1-4]. The present study considered the effects of acceleration 
on a turbulent boundary layer in the fully rough state. This subject 
was investigated not only because of its importance in the flow in 
nozzles and over turbine blades and reentry vehicles, but also to 
provide basic information by observing the response of the flat plate 
turbulent boundary layer to the imposed perturbations of roughness 
and acceleration. 

The influence of surface roughness on turbulent flows is usually 
divided into three regimes, which are characterized by the magnitude 
of the roughness Reynolds number, Re^, where 

ksUT 
Re* = - £ - 1 (1) 

v 
The equivalent sand grain roughness parameter, ks, is a commonly 
used, single-length-scale descriptor of rough surfaces determined by 
comparison with Nikuradse's [5] classic rough pipe flow experiments. 
For Re/, < 5, the roughness elements are contained entirely within 
the viscous sublayer and the flow is termed smooth. For 5 < Re^ < 
55-70 the elements protrude progressively further into the sublayer, 
and the flow is called transitionally rough. For Re/, > 55-70 the viscous 
sublayer is effectively destroyed, and the flow is termed fully 
rough. 

Experimental results for zero pressure gradient turbulent boundary 
layers on the present rough surface were reported by Healzer [1, 2] 
and Pimenta [3, 4]. Healzer constructed the basic experimental ap
paratus and reported Cf/2 and St data both with and without blowing 
for several velocities which included the transitionally rough and fully 
rough flow regimes. He confirmed that, for fully rough flow over the 
present surface, both Cf/2 and St were independent of Reynolds 
number, i.e., 
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w-f$.*) 
St = g M , F 

\ r I 

(2) 

(3) 

Pimenta reported results of an extensive investigation of the fluid 
dynamics and heat transfer in both transitionally rough and fully 
rough zero pressure gradient layers both with and without blowing. 
His observations on the fully rough state included: 

1 The effect of roughness on the turbulent field structure ex
tended over most of the layer. 

2 Blowing made the layer behave as if the surface had physically 
larger roughness elements. 

3 For very large enthalpy thicknesses, the Stanton number ap
peared to converge to an asymptotic value. 

4 Reynolds shear stress correlation coefficients were unchanged 
from the values reported for smooth wall flows. 

Previously published studies of the combined effects of acceleration 
and roughness on the turbulent boundary layer have reported only 
values of wall heat flux. Reshotko, et al. [6], and Banerian and 
McKillop [7] investigated nozzle wall flows, while Chen [8} cited ex
perimental results for flow over hemispheres and Hodge [9] cited 
experimental results for flow over a hemisphere-cylinder. No 
boundary layer measurements were obtained in any of these 
studies. 

The fluid dynamic results of the present study have been previously 
reported [10], Those results showed that the proper acceleration pa
rameter for use with rough wall flows is 

LL dx 
(4) 

where r is a characteristic roughness length. It was shown analytically 
and experimentally that in a constant Kr acceleration for F > 0 and 
constant, the fully rough layer develops toward an equilibrium state 
where Cf/2, §2. H, /3, and G are all constant and the profiles of mean 
velocity and components of the Reynolds stress tensor exhibit simi
larity in the flow direction. This equilibrium state satisfies the criteria 
formulated by Rotta [11] for exact equilibrium behavior: 

Cf/2 = constant 

db\/dx = constant 

0 = constant 

(5) 

Experimental Apparatus and Measurement 
Techniques 

A brief description of the experimental apparatus and measurement 
techniques will be presented below. Details of the apparatus, mea-
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surement techniques and calibrations, qualification tests, and tabular
data listings were reported by Coleman (12).

The experimental apparatus is a closed-loop wind tunnel using air
as both the primary and transpiration fluids. Air temperature is
controlled using water-cooled heat exchangers in both the primary
and transpiration loops. The test section is 2.44 m long, 0.51 m wide
and 0.10 m high at its entrance. A flexible plexiglass upper wall
(constructed in five sections connected by thin plexiglassjoints) can
be adjusted to produce the desired variation in U~.

The test surface consists of 24 plates ellch 0.10m in the axial di
rection. The plates (Fig. 1) are 12.7 mm thick and uniformly porous.
'They are constructed of 11 layers of 1.27 mm dia copper spheres
packed in the most dense array and brazed together. This configu
ration produces a rough test surface which is uniform and determin
istic.

Each plate is thermally isolated from neighboring plates and has
individual electrical power and transpiration air controls and ther
mocouples for determining plate temperature. Stanton numbers were
determined by subtracting the plate losses (known from energy bal
ance qualification tests) from the measured power input. Uncertainty
of the resulting St data is within ±O.OOOI Stanton number units (i.e.,
if St = 0.00200, the uncertainty is within ±5 percent).

The Stanton number data reported were taken with a constant wall
temperature and with a wall-to-freestream temperature difference
of approximately 17°C to maintain a constant property boundary
layer. The freestream velocity at the test section inlet was nominally
26.8 m/s. All data were taken with a 1.27 mm wide, 0.80 mm high
phenolic trip installed 77 mm upstream of the test surface. The tur
bulent boundary layer was in a fully rough state for all cases reported.
Roughness Reynolds number (based on ks = 0.79 mm) varied from
66 to 113 for the F = 0 runs and 55 to 78 for the F = 0.0039 run.

Mean temperature profiles were measured with a 0.076 mm dia,
butt-welded, Chromel-con~tantanthermocouple mounted in a tra
versing probe holder. The probe was designed with a length of ap
proximately 16 mm to minimize conduction errors and was calibrated
in an oil bath against a quartz thermometer.

Measurements of mean velocity and components of the Reynolds
stress tensor were made using hot wire anemometry. Skin friction
coefficients were determined (10) using these measurements and the
momentum and continuity equations integrated from y = 0 to a point
in the boundary layer where u'v' data had been obtained.

Discussion of Experimental Results
The experimental program covered five different cases:
(1) K r = 0 F = 0 (baseline)
(2) K r = 0.15 X 10-3 F = 0 (equilibrium)
(3) K r = 0.29 X 10-3 F = 0 (equilibrium)

Fig. 1 Closeup photograph 01 the rough test surface

(4) K r = 0.29 X 10-3 F = 0.0039 (equilibrium)
(5) K = 0.28 X 10-6 F = 0 (nonequilibrium)

Case (1) was run as a baseline set, to compare the present data with
those of Pimenta (3) for identical conditions. Cases (2, 3) and (4) are
equilibrium acceleration runs for a fully rough turbulent boundary
layer. In Case (5) the smooth wall acceleration parameter K = (vi
U~ 2)(dU~/dx) was maintained constant.

An accelerating turbulent flow on a smooth wall with K = constant
yields a boundary layer with constant momentum thickness Reynolds
number [13]. This flow is an equilibrium flow for smooth wall layers
in the sense that mean velocity profiles become similar and G and {3
are constant, but is not truly an equilibrium flow in the sense of
equation (5) since dor!dx ~ I/U~2 r< constant. Case (5) represents
a nonequilibrium run for the fully rough layer. Thus, one would not
expect similarity in profiles or constant values of Cr/2, 02, H, (3 and
G for K = constant.

Stanton Number. The behavior observed for the four cases of
accelerated flow investigated is summarized in Figs. 2-5. Shown in
these figures are the variation of K r• the integral fluid dynamic
quantities Cr/2, 02, and H (10), and Stanton number (which illustrates
the integral behavior of the thermal field). In each of these figures,
the data are plotted versus nondimensional distance along the test
section, x/r. In the discussion which follows, F = 0 unless specifically
stated otherwise.

In Case (2) (Fig. 2), K r was maintained at a constant value of 0.15
X 10-3 from x = 1.12 m to 2.24 m, with the freestream velocity in·

to2 = enthalpy thickness, So [pU/p~U~][(T

- T ~)/(Tw - T ~»)dy

o = momentum boundary layer thickness.
U/U~ = 0.99

01 = displacement thickness, So[1 - (put
p~U~)]dy

02 = momentum thickness, So [pU/p~U~J[l

- (U/U~»)dy

EH = eddy diffusivity for heat
EM = eddy diffusivity for momentum
v = kinematic viscosity
p = density
T = shear stress

Subscripts

a = position where K or K r becomes con·
stant

o= total value
w = wall value
ro = freestream value

St = Stanton number, q"w/[p~U~Cp(Tw-
T~.o»)

T = mean temperature
toT = (Tw - T~.o)

T, = (toT) St!..JCr/2
u' = longitudinal velocity fluctuation
U = mean longitudinal velocity
U, = friction velocity, U~ .../Cr/2
v' = velocity fluctuation normal to surface
V = mean velocity normal to surface
x = longitudinal coordinate, measured from

wind tunnel nozzle exit plane
y = coordinate normal to surface, measured

from plane of the crests of spherical ele
ments

C( = thermal diffusivity
{3 = pressure gradient parameter, (or!

Tw)(dP/dx)
to = thermal boundary layer thickness, (Tw

- T)/Tw - T~) = 0.99

_____Nomenclature _

Cr/2 = skin friction coefficient, Tw/(pU~2)
Cp = specific heat of fluid
F = blowing fraction, Pw Vw/p~U~

G Clauser shape factor, (H
1)/(H.../Cr/2)

H = shape factor, Or!02
I = total enthalpy referenced to freestream,

(i + U2/2) - (i~ + U2~/2)

i = static enthalpy
k = thermal conductivity
ks = equivalent sand grain roughness
K = smooth wall acceleration parameter,

(v/U2~)(dU~/dx)

K r = rough wall acceleration parameter,
(r/U~)(dU~/dx)

P = mean pressure
Prr = turbulent Prandtl number, EM/EH

q" = heat flux
r = radius of spheres comprising test sur-

face
Rek = roughness Reynolds number. ksU,/v
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Fig. 2 Data for K, = 0.15 X 10~3, F = 0 equilibrium acceleration case 

creasing from 26.8 m/a to 35.1 m/s. The momentum thickness, 
boundary layer shape factor and skin friction coefficient all appear 
to reach constant values in the constant-ifr region, indicating that 
equilibrium flow was established. Stanton numbers in the acceleration 
region are about 10 percent larger than for the Kr = 0 case and appear 
to be approximately constant within the data uncertainty. The be
havior is different from that observed for accelerated smooth wall 
layers. Smooth wall Stanton number is unaffected for small K, then 
decreases as K increases [13] compared to an unaccelerated case at 
the same Reynolds number or same x -position. 

Data for Cases (3) and (4), for which a region where Kr = 0.29 X 
10 - 3 was established, are shown in Figs. 3 and 4. In Case (3), F = 0, 
while in Case (4) the blowing fraction had a uniform value (F = 0.0039) 
along the entire test section. In both these cases, Kr was constant from 
x = 0.61 m to x = 1.32 m. The freestream velocity increased from 26.8 
m/s to 39.3 m/s, and equilibrium flow was achieved in the acceleration 
region, with ^2, H, and C//2 all approaching constant values. Stanton 
number again increased in the region of acceleration, then decreased 
rapidly to the Kr = 0 baseline data when the favorable pressure gra
dient was removed. 

The summary data for the nonequilibrium case, K = 0.28 X 10~6, 
are presented in Fig. 5. The smooth wall acceleration parameter K 
was held constant from x = 0.61 m to x = 1.32 m. The freestream ve
locity, U„, increased from 26.8 m/s to 45.7 m/s, and Kr varied from 
0.25-0.50 X 10~3 in this region. The shape parameter H decreased 
along the entire test section, while 82 increased as the layer entered 
the region of acceleration, then leveled off and finally decreased. This 
82 behavior is similar to that observed previously in an asymptotic 
accelerated smooth wall layer [14,15]. The skin friction coefficient 
showed very little variation, and appeared to remain about constant. 
This is not surprising considering the small variation of momentum 
thickness in the acceleration region. Stanton number showed the same 
increase over Kr = 0 values observed in the equilibrium cases and 
recovered immediately to unaccelerated baseline values when the 
acceleration was removed. 
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Fig. 3 Data for K, = 0.29 X 10~3, F = 0 equilibrium acceleration case 

While St and C//2 for the nonequilibrium case exhibit the same 
behavior as observed for the equilibrium cases, the profiles of mean 
velocity and Reynolds stress tensor quantities did not exhibit simi
larity [12] as they did in Cases (2-4). In the K = constant region 5,62, 
A and A2 were all at an apparent maximum with 5,82 and A showing 
a decrease by the end of the acceleration region [12]. In the authors' 
opinion, the apparently constant values of St and C//2 in Case (5) 
would probably not be maintained if the region of K = constant were 
extended. Unfortunately, the physical limitations of the test appa
ratus did not allow a longer region of K = constant acceleration. 

As noted above, Stanton number appeared to be approximately 
constant, within the data uncertainty, in regions where Kr was con
stant. It is impossible to reach a firm conclusion in this regard due to 
the uncertainty in the data and the relatively short regions of accel
eration. The same data could also support the contention that Stanton 
number for Kr > 0 varies as some weak function of A2. The Stanton 
number data in the accelerated region for all three equilibrium runs 
are shown versus A2/r in Fig. 6 and compared with zero pressure 
gradient data for both F = 0 and F = 0.0039. The accelerated data 
show an increase over the Kr = 0 data by ~10 percent for F = 0 and 
~20 percent for F = 0.0039. 

As previously reported [10], the roughness Reynolds number in
creased above its zero pressure gradient values as the layer passed 
through the region of acceleration in each of the cases studied in this 
investigation. The fully rough turbulent boundary layer thus pro
gressed to a "rougher" state when accelerated. The increase in Stanton 
number noted in the acceleration regions is not surprising, therefore, 
since one would expect a priori that a rougher layer should exhibit 
larger Stanton numbers than a less rough layer. 

Coleman and Hodge [16] presented results of an analysis describing 
the response of a rough wall turbulent boundary layer to pressure 
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gradients and showed that it was possible for the layer to either 
progress toward a rougher state, a less rough state, or remain in the 
same roughness state when accelerated. The specific response depends 
on the history of the layer, the local state of the layer, and the strength 
of the acceleration. In this investigation, the Kr = 0 layer moved 
toward a less rough state, while for all cases of Kr > 0 it moved toward 
a rougher state. 

Mean Temperature Profiles. Profiles of mean temperature in 
the equilibrium acceleration regions exhibited similarity when plotted 
in (Tw - T)(TW - T„) versus y/A2 coordinates. This is illustrated 
using the data from the Kr = 0.15 X 10 - 3 case in Fig. 7, where xa de
notes the x position at which Kr becomes constant. Similarity is ob
served to extend down to the closest data point from the surface (y 
= 0.33 mm). 

Mean temperature profiles for the same case are plotted in Fig. 8 
in (Tw - T)f(Tw - TJ) versus £//[/„ coordinates. Pimenta [3] found 
these coordinates useful since fully rough Kr = 0 data are linear when 
plotted in this manner. The present profile at x = 0.86 m (prior to the 
acceleration region) exhibits this linearity. The two profiles in the 
acceleration region however, are not linear and do not exhibit simi
larity in these coordinates. It should be noted that the accelerated 
profiles, if extrapolated to U/U«, = 0, still show the temperature 
"jump" condition discussed by Pimenta, indicating that the apparent 
(extrapolated) wall position is different for the mean temperature and 
mean velocity fields. 

Turbulent Prandtl Number and Heat Flux. The results dis
cussed below were obtained from calculations using St, Cf/2, U, and 
T data and the energy, momentum, and continuity equations inte
grated to a position y\ in the boundary layer. These integrations 
yield 
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for the shear stress distribution and 
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for the heat flux distribution. Since the fluid dynamics data were 
taken under isothermal conditions, Equation (6) assumes p = p„(x), 
while equation (7) retains p = />(*, y). (Although these variations were 
included in the analysis, numerically they were insignificant in all 
cases.) 

The shear stress and heat flux contain both turbulent and laminar 
contributions and may be written as 

T = —p^u'v' + pmv-
dy 

and 

q" = pCpv't' - k 
dT 

dy 

(8) 

(9) 

If the turbulent contributions are modeled using eddy diffusivities 
for momentum and heat, equations (8) and (9) become 

by 

and 

where 

and 

; pCp(eH + a) 
dT 

dy 

- v't' = eH 

dy 

dT 

dy 

(10) 

(11) 

(12) 

(13) 

The turbulent Prandtl number is defined as the ratio of the eddy 
diffusivities for momentum and heat 

P r r = tm/cH (14) 

In order to demonstrate the consistency of the Pry results calculated 
using the method outlined above with the P r r data obtained by Pi-
menta [3] from measurements of u'v', u't', and dT/dU, values of P r r 
were calculated using the present method for the unaccelerated, un
blown U„ = 27 m/s case reported by Pimenta. Results of this calcu
lation are compared in Fig. 9 with the measured values of Pr^ reported 
by Pimenta. The two methods give results which agree well in the 
inner region. The calculated data were very uncertain in the outer 
region where dU/dy and bT/dy aproach zero since the uncertainty 
in the numerical calculations of the derivatives increases dramatically 
as y —• 5. Pimenta avoided this increase in uncertainty by measuring 
T and U sequentially with the same probe, without moving it, and by 
calculating dT/dU from the linear (Tw - T)/(TW - T„) versus U/U*. 
plots discussed previously. 

Calculated values of Pr^ for the four acceleration cases of this study 
are presented in Fig. 10. Also shown are the bounds on the smooth wall 
acceleration data reported by Kearney [17] for K < 2.5 X 10 - 6 and 
the calculated data for Pimenta's K, = 0 case. The rough wall data 
lie at the lower edge of the smooth wall data range. It appears from 
the present data that the use of a constant Pry = 0.7-0.8 would be a 
reasonable assumption in a prediction method modeling accelerated 
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flow over the present rough surface. Comparison of the present data 
with those of Pimenta indicates that for fully rough flow the turbulent 
Prandtl number may be decreased slightly by acceleration. 

Calculated values of the turbulent heat flux v't' for the two unblown 
equilibrium runs are shown in Fig. 11 as u't'/UTTT versus y/b. Com
parison of these values with the unaccelerated data measured by Pi
menta [3] and Orlando [18] on rough and smooth walls, respectively, 
indicates that the distribution of u't'/UrTr appears to be relatively 
insensitive to acceleration and surface condition, at least within the 
ranges of the data available and the estimated uncertainty of the data 
(±15 to 20 percent). 

S u m m a r y and C o n c l u s i o n s 
The statements and conclusions made below should be understood 

to apply to the incompressible turbulent flow of a fluid over a surface 
similar to the one used in this study and within the ranges of param
eters and variables investigated. 

• A fully rough turbulent boundary layer in a constant-.^,- ac
celeration with F > 0 and constant develops toward an equilibrium 
state where C//2, 82, H,fi, and G are all constant [10]. In that state, 
the profiles of mean velocity and mean temperature are similar in the 
flow direction, and roughness Reynolds number increases in the flow 
direction. Stanton numbers are greater at a given x-position or en
thalpy thickness than for a zero pressure gradient. Stanton number 
may approach a constant value, though this cannot be verified satis
factorily due to the uncertainty in the data. 

• Turbulent Prandtl numbers calculated using the data of the 
present experiment indicate an approximately constant value of 
0.7-0.8 across the layer. These values are in the lower range of the data 
previously reported for smooth wall accelerated layers and are slightly 
below the values reported for the fully rough zero pressure gradient 
case. 

• The profiles of v't'/U^Tr calculated from the present acceler
ated data are in good agreement with those reported for smooth and 
rough wall zero pressure gradient layers. It thus appears that the 
turbulent heat flux profile, nondimensionalized in this manner, is 
relatively insensitive to surface condition and favorable pressure 
gradient. 

A c k n o w l e d g m e n t s 
This research was made possible by support from the Office of 

Naval Research, Contract N00014-67-A-0112-0072. The experimental 
apparatus was constructed during an earlier contract from the De
partment of the Navy, Contract N00123-71-0-0372. The authors wish 
to thank Dr. W. H. Thielbahr, Mr. James Patton, and Dr. Ralph 
Roberts for their support. 

The first author also gratefully acknowledges financial support from 
Sandia Laboratories during the research program. 

R e f e r e n c e s 
1 Healzer, J. M., "The Turbulent Boundary Layer on a Rough, Porous 

Plate: Experimental Heat Transfer with Uniform Blowing," Ph.D. Dissertation, 
Stanford University, 1974. (Also Report HMT-18, Thermosciences Division, 
Dept. of Mech. Eng., Stanford University, 1974.) 

2 Moffat, R. J., Healzer, J. M., and Kays, W. M, "Experimental Heat 
Transfer Behavior of a Turbulent Boundary Layer on a Rough Surface with 
Blowing," ASME JOURNAL OP HEAT TRANSFER, Vol. 100, No. 1,1978, pp. 
134-142. 

3 Pimenta, M. M., "The Turbulent Boundary Layer: An Experimental 
Study of the Transport of Momentum and Heat with the Effect of Roughness," 
Ph.D. Dissertation, Stanford University, 1975. (Also Report HMT-21, Ther
mosciences Division, Dept. of Mech. Eng., Stanford University, 1975.) 

4 Pimenta, M. M., Moffat, R. J., and Kays, W. M., "The Structure of a 

V frfc 

0 6 

- 0 0.15 XIO"3 A o 
A 0.29XIO"3 $ a 
0 0 (PIMENTA) 

"00(ORLANDO-SMOOTH 
WALL) ° 

1 1 1 1 1 

-

; 

y/S 

Fig. 11 Comparison of the unblown Vt'/UTTT profiles for the equilibrium 
accelerations of the present study with unaccelerated profiles for smooth and 
rough wall layers 

Boundary Layer on a Rough Wall with Blowing and Heat Transfer," ASME 
JOURNAL OF HEAT TRANSFER, Vol. 101, No. 2,1979, pp. 193-198. 

5 Nikuradse, J., "Stromungsgestze in rauhen Rohren," VDI Forschung-
sheft, No. 361, English Translation, NACA TM 1292,1933. 

6 Reshotko, M., Boldman, D. R., and Ehlers, R. G, "Heat Transfer in a 
60° Half-Angle of Convergence Nozzle with Various Degrees of Roughness," 
NASA TN D-5887,1970. 

7 Banerian, G., and McKillop, A. A., "The Effects of Surface Roughness 
in Nozzles on Heat Transfer," Proceedings of the Fifth International Heat 
Transfer Conference, Vol. II, pp. 234-238,1974. 

8 Chen, K. K., "Compressible Turbulent Boundary-Layer Heat Transfer 
to Rough Surfaces in Pressure Gradient," AIAA Journal, Vol. 10, 1972, pp. 
623-629. 

9 Hodge, B. K., "Extended Mixing Length Hypothesis Applications to 
Transpired or Roughwall Compressible Boundary Layers," ASME Paper No. 
78-HT-22,1978. 

10 Coleman, H. W., Moffat, R. J., and Kays, W. M., "The Accelerated Fully 
Rough Turbulent Boundary Layer," Journal of Fluid Mechanics, Vol. 82, Part 
3,1977, pp. 507-528. 

11 Rotta, J. C, "Turbulent Boundary Layers in Incompressible Plow," 
Progress in Aeronautical Sciences, Vol. 2, pp. 1-219, Pergamon Press, 1962. 

12 Coleman, H. W., "Momentum and Energy Transport in the Accelerated 
Fully Rough Turbulent Boundary Layer," Ph.D. Dissertation, Stanford Uni
versity, 1976. (Also Report HMT-24, Thermosciences Division, Dept. of Mech. 
Eng., Stanford University, 1976.) 

13 Kays, W. M. and Moffat, R. J., "The Behavior of Transpired Turbulent 
Boundary Layers," Studies in Convection: Theory, Measurement and Ap
plications, Vol. 1, edited by B. E. Launder, Academic Press, New York, 1975, 
pp. 223-319. 

14 Julien, H. L., Kays, W. M., and Moffat, R. J., "The Turbulent Layer on 
a Porous Plate: Experimental Study of the Effects of a Favorable Pressure 
Gradient," Report No. HMT-4, Thermosciences Division, Dept. of Mech. Eng., 
Stanford University, 1969. 

15 Loyd, R. J., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary 
Layer on a Porous Plate: An Experimental Study of the Fluid Dynamics with 
Strong Favorable Pressure Gradients and Blowing," Report No. HMT-13, 
Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1970. 

16 Coleman, H. W., and Hodge, B. K., "Conditions Which Prescribe the 
Evolution of Turbulent Flow Influenced by Roughness," AIAA Paper No. 
79-1564,1979. 

17 Kearney, D. W., Moffat, R. J., and Kays, W. M., "The Turbulent 
Boundary Layer: Experimental Heat Transfer with Strong Favorable Pressure 
Gradients and Blowing," Report No. HMT-12, Thermosciences Division, Dept. 
of Mech. Eng., Stanford University, 1970. 

18 Orlando, A. F„ Moffat, R. J„ and Kays, W. M„ "Turbulent Transport 
of Heat and Momentum in a Boundary Layer Subject to Deceleration, Suction 
and Variable Wall Temperature," Report No. HMT-17, Thermosciences Di
vision, Dept. of Mech. Eng., Stanford University, 1974. 

158 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



P.-C. Lu 
Professor, 

Department of Mechanical Engineering, 
University of Nebraska, 

Lincoln, Neb 
Mem. ASME 

Perturbation Solutions of Transient 
Heat Transfer to a Porous Medium 
from a Fluid Stream1 

Asymptotic behavior of the two-phase, thermal response of a porous medium, with a fluid 
throughflow, to a sudden change of the oncoming stream temperature is examined via four 
cases of perturbation solutions: (1) massive blowing, fast interphase (thermal) link, small 
conductivity, and small (thermal) interaction at the entrance, (2) moderate blowing, and 
fast interphase link, (3) massive blowing, moderate interphase link, and small interaction 
at the entrance, and (4) small conductivity, as well as weak interphase link. Schumann's 
classical, two-phase, and non-diffusive model is shown to be just the outer limit of Case 
(1). The "single-phase model" is derived. Associated boundary layers are displayed. Cer
tain numerical trend reported in the literature is also explained. 

I n t r o d u c t i o n 
To complement the numerical studies reported by various authors 

[1-7] on the transient temperature response of a porous medium to 
a sudden change in temperature of the oncoming fluid, the present 
paper concentrates on the asymptotic behavior of the following system 
(which is explained in more detail in the next section). 

d26 dd 
F — + F B ( » - f l ) - — (1) 

•g^- = B(v-d) (2) 

7 = 0:6 = 0 (3) 

t=0:v-l=S(B-l) 

gS(8 - 1) = 

dd 

d0 

(4) 

(5) 

(6) 

where (in dimensionless terms) 8 and v are respectively the medium 
and fluid temperatures (above a certain reference value); f is the 
distance from the entrance; T, the time; F, the Fourier number, B, the 
interphase Biot number; g, the mass flow rate; and where S and b, 
represent the thermal interaction at the bounding faces of the me
dium. 

The asymptotic behavior of the governing system is exhibited 
through a number of perturbation solutions, singular and regular as 
the case may be ([8-10]). 

Case 1 B » 1, B/g ~ 0(1), BF ~ 0(1), Sg ~ 0(1). Roughly 
speaking, in practical terms, this case represents the situation with 
massive blowing, strong interphase (thermal) link, small conductivity, 
and small (thermal) interaction at the entrance. The technique of 
singluar perturbation yields an outer limit which is exactly the clas
sical Schumann model [1]. For the inner limit, it is found that iso
thermal boundary layers exist near the entrance and the exit, with 
thicknesses ~ 0 ( l / \ /B) . 

Case 2 B » 1, g ~ 0(1). Here the interphase link is strong, but 
the blowing is moderate. The outer limit in the singular perturbation 
yields identical temperatures for the two phases, and thus renders 
support to the single-phase model treated in the literature [4-7]. In 
an attempt to improve the accuracy of the result based on the outer 
limit, it becomes possible to explain the numerical trend displayed 
in [2], which indicates that the fluid temperature deviates more from 
the single-phase solution at small time, while the bed temperature 

1 Work performed under NSF Grant ENG78-04060. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY OF 

MECHANICAL ENGINEERS for presentation at the Winter Annual Meeting, 
New York, NY, December 2-7,1979. Revised manuscript received by the Heat 
Transfer Division February 14,1980. Paper No. 79-WA/HT-44. 

deviates more at large time. Finally, an investigation into the inner 
limit shows that a boundary layer of thickness ~ 0(1/B), with an ex
ponential fluid-temperature distribution, exists near the entrance. 
Thus, the composite limit [8-10] effectively displays a two-phase 
response. 

Case 3 g » 1, Sg ~0(1). This regular case, which corresponds 
to the situation with massive blowing and weak interaction at the 
entrance, yields a series of terms representing conductive temperature 
distributions in the presence of heat generation (proportional to the 
temperature). 

Case 4 F « 1, B « 1. This regular case yields zeroth-order 
terms (with error ~ 0(FB)) showing a purely conductive temperature 
distribution in the bed, and a fluid temperature with an exponential 
character. For higher-order terms, equivalent heat generation shows 
up in the bed. In practice, the present case is typified by small con
ductivity and weak interphase link. 

T h e P r o b l e m 
Referring to Burch, et al. [2], it can be shown that the equations 

governing the evolution of the temperatures of the two mutually 
embedded phases in the form of a porous medium with a fluid 
through-flow are (see Nomenclature). 

+ - 2 - (7) - Tm) -
K, 

d2r„ 
dx2 

-GC,^ = h„(Tr 

arm 
dt 

Tm) 

(7) 

(8) 

The effective, volumetric, interphase, heat-transfer coefficient hu, 
as defined in Bird, et al. [11], is in general related to the Reynolds 
number of the flow through the porous medium. Many other works 
in the literature ([12-13], for instance) also employ hu in this fashion. 
However, the reader must be alerted to the possibility of building a 
volumetric heat-transfer coefficient upon heat-exchange per unit area 
of the interphase surface, with void fraction of the medium explicitly 
displayed in the formulation (see [1], or [14-16]). 

The mass flux G, which sets up the convective mechanism in 
equation (8) is raised to a constant for t > 0 from zero (for t < 0). The 
initial condition to be investigated specifically is 

t = 0: Tm = Ti, a constant (9) 

The boundary condition2 for the porous medium at the exit face, 

2 Equations (9) and (10) reflect the fact that there is no flow for ( < 0, and 
the bed is initially in thermal equilibrium with the stationary fluid filling it; 
for t > 0, fluid from a reservoir at T/0 flows through the bed and exits (across 
a thermal boundary layer) into another reservoir still maintained at the initial 
temperature [2]. This situation can, of course, be modified to suit actual 
cases. 
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beyond which the fluid temperature T,- prevails, is 

x = L:-Km—^=h(Tm-Ti) (10) 
dx 

At the entrance of the porous medium, there are two boundary con
ditions to be enforced: 

x = 0:GCf(Tfo - Tf) = h,(Th - Tm) 

dx 
-Km hf(Tf0-Tm) 

(11) 

(12) 

where condition (11) expresses the energy transfer (by convection) 
from the oncoming stream to the inlet face of the porous medium, and 
condition (12) represents that (by conduction) from the inlet face to 
the interior of the solid phase [2]. Clearly the thermal link3 between 
the fluid and the solid at the entrance is represented by the heat 
transfer coefficient hf; that at the exit, h; and that (interphase) in the 
range 0 < x < L,hu. 

Obviously, the fluid in equation (8) is assumed to be incapable of 
storing energy or conducting heat. Thus, it is impossible to enforce 
an initial condition for the fluid temperature in the present investi
gation. The reader may notice later certain singularities in Tf (i.e., 
c), which can always be traced back to the absence of a time-derivative 
term in equation (8), and a remedy of which is beyond the scope of the 
present investigation. (Essentially, a thermal front would move 
through the bed. Before the arrival of this front, the true initial v 
prevails; after the arrival, the theoretically predicted v-value takes 
over. The discontinuity, if any, at the front is the singularity being 
alluded to.) 

Introducing dimensionless quantities, as explained in the No
menclature, into equations (7-12), we have equations (1-6) quoted 
in the previous section. 

Case 1 B » 1, B/g ~ 0(1), BF ~ 0(1), Sg ~ 0(1). In seeking 
solutions in the form of power series of 1/B for the first case examined 
in the present study, we set y = g/B ~ 0(1), / = BF ~ 0(1), and a = BS 
~ 0(1). Then, substituting the expansions 

e = 0<°> + e w / B + 0<2>/B2 + . . . 

y = ,,«>> +„<i)/B + i/<2)/B2+ . . . 

(13) 

(14) 

3 Although hv, h and hf are under the influence of the common mass-flow 
rate as well as the thermal diffusivity of the bed, they can be made large or small 
independently of one another. For instance, hv can be varied through the 
tortuosity of the bed; or, hf (h) can be increased by augmenting heat transfer 
at the inlet (exit) face. 

-y-

into equations (1-3), we have:4 

dfl<°> 

dr 

"aF 
T = O:0<o) = 0 

f=0: i /°> = l 

d0W = 

dr ~ ; df2 

di/(''> 

/(„«» _ 0(0)) 

„(0) _ 0(0) 

d20<i-l) 
0U)), i = 1, 2, 

1-7 i,") - 0<» 
af 

O:0W = O 

f='0:7J»('» = 
d0''~1> 

af 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The solutions of the system, equations (15-18), are found [4,17] to 
be 

»<o) = 

0<°> = / exp ( - - ) £ exp (-fs) • I0 (2 yj- fsj ds (23) 

7 °M exp - e x p ( - / r ) - J 0 

+ / J ^ T exp (-fs) • J0 (2 J - fs) ds (24) 

where Jo is the modified Bessel function of the first kind, of order zero. 
Equations (23) and (24) do not satisfy any boundary condition for 0 
since the f-derivative term of 0 is lost on the way to equation (15). 
They cannot be of use near f = 0 and 1, being outer limits of the sin
gular perturbation and supposed to match with the corresponding 
inner limits according to the matching principle [8-10], 

To investigate the behavior of 0 near f = 0, for large B, we magnify 
the neighborhood of f = 0 by introducing f = \/Bf. Equations (1) and 
(2) become, on letting B - • °° with f fixed 

/ —r-r + f(v(o) - 0«») = —— 
df2 dr 

Mo) n 

af 

(25) 

(26) 

4 The boundary condition for v used here is a combination of equations (4) 
and (5) with (6 — 1) eliminated between them. Our preference for this is 
prompted by experience gained in Case 2. 

• N o m e n c l a t u r e ^ 

02 = g/2 
a4 = b+ g/2 
B = interphase Biot number, huL

2/Km 

B' = B/g 
b = hh/Km 

C = specific heat capacity, J /K • kg 
F = Fourier number, amt*/L2 

/ = B F 
G = mass flow rate per unit of flow passage 

area (mass flux), kg/s • m2 

g = LGCf/Km 

h = exit heat-transfer coefficient, W/m2 • K 
hf = heat transfer coefficient at the entrance, 

W/m2 • K 
hu = effective volumetric heat transfer coef

ficient between the two phases in the bed 
W/m3 • K 

K = thermal conductivity, W/m • K 
L = length of bed in the flow direction, m 
S = hfl(GCf) 
s = dummy variable of integration 
T = temperature, K 

T/0 = temperature of the entering fluid 
stream, far ahead of the entrance, K 

t = time, s 
t* = time of observation around which the 

phenomenon is being examined, s 
x = coordinate in the flow direction origi

nating from the entrance, m 
a = thermal diffusivity, m2/s 
7 = S/B 
f = (Tf-Ti)/(Tf0-Ti) 
vo = zeroth-order term in an expansion of v in 

Case 4 
v\ = first order term in an expansion of v in 

Case 4 
<r = BS 
a = Sg 
T = t/t* 
T' = F T 

e = (Tm-Ti)/(Tl0-Ti) 
0o = zeroth-order term in an expansion of 0 in 

Case 4 
0i = first-order term in an expansion of 0 in 

Case 4 
f = x/L 
r = V5f 
f' = Bf 
Superscripts 

c = composite expansion, zeroth-order 
(0) = zeroth-order term of an outer expan

sion 
(1) = first-order term of an outer expan

sion 

Subscripts 

/ = fluid stream 
i = initial value 
m = porous medium (solid bed) 
0 = zeroth-order term in an expansion 
1 = first-order term in an expansion 
(0) = zeroth-order term in an inner expan

sion 
(1) = first-order term in an inner expan

sion 
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Fig. 1 Outer limit of the bed temperature, Case 1 
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Fig. 2 Outer limit of the fluid temperature, Case 1 

where 0(O) and V(o) are the inner limits of 6 and v, respectively. The 
solutions of equations (25) and (26) 

C(0) = 1 

0(0) = 1 - exp ( - / T ) 

(27) 

(28) 

satisfy f ie boundary conditions (4) and (5), the initial condition for 
8(o), and the matching principle [8-10] that 0(o) approach as f -> °° 
the value of 0(o> at f = 0. Physically, they represent the temperature 
variations of the two phases in a thin boundary layer with a thickness 
of order l / \ / B . The layer is seen to be isothermal (but with different 
temperatures for the two phases); the bed temperature varies expo
nentially-with time. Omitting details, we may also report that a similar 
boundary layer exists near f = 1 across which p (0)(l, T) and 0<o)(l, T) 
prevail. 

In the above, we have clearly regained the classical Schumann 
model6 [1] as a rational approximation for large B. The existence of 
the boundary layers actually enhances the already firm position of 
the Schumann model in applications. 

Figures 1 and 2 show plots of 0(o) and i/(0\ respectively. 
Case 2 B » l , | f ~ 0 ( l ) . Substituting the expansions (13) and 

(14) into equations (1-6), we have for this case 

a20<°> d0 (o ) d0 (o ) 

af2 g df dr 
i/<0> = 0(0) 

' T = O:0«» = O 

d0<o) 

f =O : ^ - [=gO ' ( o >- l ) ] =g (0 < o ) - l ) 
af 

d0(o) 

f = l : — + 60«» = O 

d20<o e>0(o e>2„(i-i) d0(i) 
F Fg + Fg2 — - = 1 = 1,2, 

af2 af af2 ar 
a^-1* 

+ 0<"'» 

af ' 
a0(,'> 

f = l : — + 60«> = O 
af 

ai/*1'-1)' 

(29) 

(30) 

(31) 

(32) 

(33) 

(35) 

(36) 

(37) 

(38) 

Here, the order of the governing system is reduced by 1 (see equa
tions (30) and (35)). Thus, only one boundary condition can be en
forced at f = Q for 0<;)- i = 0,1,2 One is tempted here to enforce 
equation (5); but a more careful look into the matter suggests the 

6 Actually, Schumann's formulation contains the time-derivative of v. Modern 
authors chose to ignore this in interpreting his work, probably because of dif
ficulty in justifying the retention of energy storage while omitting heat con
duction in the fluid. 

linear combination of equations (4) and (5), with (0 — 1) elimi
nated: 

r-o£-,(,. 
af 

i) (39) 

A brief explanation is given as follows: In the system, equations (1-6), 
equation (4) can, of course, by replaced by equation (39). Then, 
eliminating v between equations (1) and (2), integrating the result 
from f = 0 to 1, and employing our new boundary condition, equation 
(39), we have6 

a Id6 a20\ „ r 
Blar a n Jo 

ra0(s,T) 
d s - F -

,a0 

af 
: Fg (40) 

This governing equation is to be solved subject to the remaining 
conditions, i.e., equations (3, 5) and (6). 

Now, substituting equation (13) into equation (40) will lose the 
second-order derivative, and the accompanying ability to satisfy the 
boundary condition at f = 0, i.e., equation (5). Differentiating this 
intermediate result with respect to f, we again have equations (29) 
and (34). But this differentiation calls for an extra boundary condi
tion; and equation (39) is naturally the choice since it has already been 
used in deriving equation (40). Substituting equation (13) into 
equation (39), we have equations (32) and (37). To summarize, we see 
that, when one out of two boundary conditions at f = 0 is to to se
lected, the natural choice is a certain linear combination of the two. 
Intuitively, this choice is also seen to be proper since the resulting 
outer expansion (valid far away from the entrance) is independent 
of the thermal-link parameter at the entrance, S. Furthermore, the 
steady solutions (exact) for 0 and v of equations (1, 2) and (4-6) have 
been rendered, by the author, into inner and outer expansions which 
fully substantiate the above choice of the boundary condition. 

Concentrating on the zeroth-order terms only, we see that 0<o) and 
c(0 ' are the outer limits in the singular perturbation; and there exists 
a boundary layer near f = 0. Introducing f" = Bf, we obtain, on letting 
B -*• «>with f* fixed, the corresponding inner limits 

= 0 
a20(o> 
af"2 

s — - m - Dm 

"(0) = S(0(o) - 1) + 1 

f" = a, :0 (o ) = 0(O)(O)T) 

where the matching principle is again incurred. 
The inner limits are easily obtained in detail as follows:7 

(41) 

(42) 

(43) 

(44) 

(45) 

6 This integro-differential formulation of the problem, which may serve as 
a basis for general numerical simulation, is not available in the literature as far 
as the author can determine. 

7 Note that no initial condition can be enforced on 0(o>; yet, the solution fits 
equation (3) automatically. 
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0 (o) = 0<°>(O,T) (46) 

m = (S - 1)[0<°>(O,T) - 1] exp (-V'/g) + 0(O)(O,r) (47) 

It is interesting to see that S plays a role only in the boundary layer.8 

The boundary layer is thus seen to be isothermal in bed temperature 
(which is time-dependent), but has the typical exponential (with re
spect to distance from the entrance) character as far as fluid tem
perature is concerned. The thickness of the boundary layer is, natu
rally, of order 1/B. 

In the rest of the present section, we will study the structure of 0(o) 

(and i/(0)) in more detail. First of all, equation (29) (together with 
equation (30)) substantiates the single-phase model, found so fre
quently in the literature [4-7], which assumes that the fluid and bed 
have identical temperatures. Secondly, numerical solutions for 6 and 
v available in [2] (for B = 5, b = 1,S = 0.4, and g = 1) show that v is 
very close to c(0> (= 0(o)) for large time, and 0 is rather close to t9(0) for 
small time, but that 0 is very much smaller than 0<°> at large time, and 
v is very much larger than v<0) (= t9(0)) at small time. (See Fig. 4 of [2]). 
This numerical trend can be explained by examining 0(1) and j»(1) in 
equations (34) and (35). At large time, equation (34) becomes 

where 

with 

0<°> = 1 + D e x p ( g f ) 

D = -b/[(g + b) exp (g)} 

is the steady part of the solution; where r\m are the positive roots of 
(see Nomenclature for a2 and 04) 

QMm.azAi) = (Vm2 ~ ^204) sin T]m - (a4 + a2)Vm cos r]m (49) 

= 0 (50) 

where 

Nm = Q2(j/m,a2,a4) 

with 

Qiirim, a2, 04) 

_ 1. (Vm2 + Q22)[(7?m2 + a4
2) + a4] + a^(r\m

2 + a4
2) 

2* 
(51) 

af2 g df : •gz 
, d20<°> 

For an estimation, we may neglect the first term on the lefthand side 
and obtain 

d0<°> 
g(i) ^ g + c o n s t a n t 

af 
But, from equation (37), we have at f = 0: 

(rim2 + at
2) 

and where 

nVm)=- f [exp(-gf/2) 
Jo 

+ D exp (gf/2)][?;m cos (7)mf) + a2 sin (?7mf)]df (52) 

The composite limits [8-10] 0O
C v<f can also be formed: 

80
c = 0(o) (53) 

^ = „ , ( 1 ) _ „ 2 ^ 
af * af 

d6K°) , d0<° 
~ g2 1- g X constant - g2 

af ac 
1 d6K» 

.•. constant ~ 
g af 

«oj d8 

d 

d20<°» 

0) 

f 1 
f= 

^o1 i/(°> - (S - 1)[1 - 0<°>(O,T)] exp (-Bf/g) (54) 

We can therefore ignore the constant of integration in our estimate 
of 0W which is a measure of the deviation of t9<°> from the true solution 
6. Then, equation (35) yields 

d0<°> 
« ( D = • .g +0U) , 

af 
-0 

These limits are uniformly valid, to 0(1/B), and represent in effect 
a two-phase response, with dependence on B and S clearly exhibited. 
They are plotted in Fig. 3 for B = 5, S = 0.4, g = 1, and b = 0.2 to show 
the general trend. 

Higher-order terms (i > 1), if needed, can be solved from equation 
(34) and conditions (36-38) by applying the same transform. Equation 
(35) then yields i/<'> for i > 1. 

Case 3 g » 1, Sg ~ 0(1). The regular expansions 

6 = 0o + dtlg + 02/g
2 + ... 

V = V0 + Vl/g + Vllg2 + ... 

yield, on substituting into equations (1-6): 

which indicates very small deviation of j / ( 0 ) from v. On the other hand, 
for small time, equation (34) yields with equation (36): 

0W ~ 0 
which demonstrates that the deviation of 0<o) from 0 should be small. 
Then, equation (35) yields the small-time estimate 

(i) df)i0) 

The estimates for 0(1) and j / ( 1 ' , (for large and small time, respectively) 
are also seen to be opposite in sign—another feature found in Fig. 4 
of [2]. 

Equation (29) can be solved with the initial-boundary conditions 
by applying a finite Fourier transform [18]; the result is the same as 
quoted in [2] where the classical separation of variables is em
ployed. 

0(0) = (̂O) _ e x p .ill 
2 m 

^ = 0 
af 

- - ^ = B f e _ 1 - 0 , - 1 ) , i ' = l , 2 , . . . 
a f 

d20; d0; 
+ B(Vi - 8i) = —-, i = 0, 1, 2 , . 

df2 d r ' 

T = O:0; = O,i = 0 , 1 , 2 , . . . 

f = 0 : x o = l 

n = ff(0o - 1) 

Vi = aOi-\,i = 2, 3 , . . . 

a0o 

af" 
ddt 

50o ' 

Nm 

X exp (-nm
2T') • [r\m cos (r)mf) + a 2s in (?)mf)] (48) 

8 This fact, the general form of the expansions, and the matching have also 
been checked against the (exact) steady solutions. 

— - a6i = 0, i = 1, 2 , . 
af 

d0; 
f = l : — - + b8i = 0,i = 0 , 1 , 2 , 

d f 

Thus, we have for the zeroth-order terms 

v0 = 1 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 
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0 o - £ 
S(Vm) 

Mm 

X exp [-(rim2 + B) r'][ijm cos (T/mf) + 3- sin (5jmf)] (62) 

where 

§o = l - c [ (VB + a) exp (V^f ) - (%/B - o) exp (-y/Bf)] 

with 

c = b/[(y/B + O-KVB + b) exp (%/B) 

- (VB - 5-)(V5 - fa) exp (-V5)] 

where r)m are the positive roots of 

Qi(rim,a,b) = 0 

with Qi defined by equation (49); where 

S(vm)= ( 0 [̂5?m cos(ijOTf) + &sin(5;mf)]df 
Jo 

and where 

•Nm = QiiVm.a.b) 

with Q2 defined by equation (51). In physical terms, 0o is seen to be 
a conductive temperature distribution in a solid with heat generation 
( « l - 0 o ) . 

In terms of do, we also obtain 

"i = B f f 60(S,r')ds - Bf + o-[l - 0o(O,r')] 
«/o 

(63) 

The higher-order terms can be obtained in the same fashion, applying 
the same transform. 

Case 4 F « 1 , B « 1 . For this case, regular perturbations 

8 = 0'o + fl'i(BF) + 0'2(BF)2 + . . . 

v = v'0 + »'i(BF) + i>'2(BF)2 + . . . 

give rise to the following systems: 

, d20'o _ dd'p 

d{* ~ dr 

dv'o 

F - (64) 

-tf - 7 « B ( / 0 - 0'o) 

T = O:0'O = O 

f = O : l - K ' o = S ( l - 0 ' o ) 

d20'; , „, % 06'i . 
F~+ (i/'i-i ~ 0'i-i) = — i , J = 1, 2,. 

df ' or 
dv'i 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

Note that the error for each perturbation is 0(BF), not 0(B) or 0(F). 
More precisely, this is the case in which BF « 1. 

Physically, the zeroth-order solutions indicate a purely conductive 
temperature distribution in the bed, and an exponential temperature 
distribution for the fluid. For higher order terms, equivalent heat 
generation shows up in the bed. 

To be specific, we have 

-g 

T = 

f = 

f = 

0:0',= 

Qw'i = 

d0', 

ld6'i 

B(i/; -

= 0 

S6'i 

-gSB' 

+ bOU = 

0'i) 

; = 0 

= 0 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 

DISTANCE I / L 

0.80 0.90 1.00 

Fig. 3 Composite limits, Case 2, with B = 5, S = 0.4, g = 1 and b = 0.2 (The 
solid curves are valid for all values of B and S.) 

H \_ fttlfn) 
b + 1/ m M'm 

X exp (-r,'m V ) [ri'm cos (rfm f) + a sin (rfm f)] (76) 

where 

c' = a(6 + l)/[i(o- + 1) + a] 

where r\'m are the positive roots of 

Qi()?'m,S-,6) = 0 

with Qi defined by equation (49); where 

M'm = QiWm,0,b) 

with Q2 defined by equation (51); and where 

# 0 ? ' m ) = C c ' [ l - - ~ W m c o s ( i j ' m f ) + r>sin(7j'mf)]rff 

We also have 

v'0 = B' exp (-B'f) f exp (Bs)0'o(s,T)ds 
J o 

+ | 1 - S [ 1 - 0'O(O,T')]| exp (-B'f) (77) 

Concluding Remarks 
Perturbation approaches to four practical cases are outlined in some 

detail, with representative numerical results included for two of the 
cases. 

To investigate the possible singularity near the start of temperature 
change for the fluid, it is seen that the energy storage (and heat con
duction) in the fluid stream must be considered. 

Although we chose to use such vivid expressions as "massive 
blowing" and the like in the discussion, we always mean that the 
corresponding dimensionless parameter is large (e.g., "massive 
blowing" — g » 1 — G » Km/LCf) or small. 
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An Exact Solution of the 
Sublimation Problem in a Porous 
Medium 
Sublimation problem with coupled heat and mass transfer taking place in a porous half-
space is defined and exact solutions for temperature and moisture distributions as well 
as the position of the moving sublimation front are obtained. The condition for the limita
tion of the sublimation process is also determined. 

1 I n t r o d u c t i o n 
Sublimation of frozen moisture in a porous medium has wide ap

plications in separation processes, food technology, heat and moisture 
migration in soils and grounds, etc. The processes of heat and mass 
transfer in a porous medium are affected by both the temperature and 
moisture concentration gradients. An increase in the temperature 
above the sublimation point of moisture builds a moving sublimation 
front in the porous medium. The location of the moving front is un
known and has to be determined as a part of the solution. The coupled 
heat and mass transfer problems with moving phase front are non
linear and solutions involve considerable mathematical difficulties. 
Exact solutions of such problems are limited to only a few idealized 
situations. 

Mathematical formulation of the heat and mass transfer in capillary 
porous bodies has been established by Luikov [1]. For solving the 
problem of evaporation of liquid moisture from a porous medium, 
Gupta [2] made an assumption that the effect of the temperature 
gradient on the mass transfer is small and may be neglected. His ap
proximate solution of the problem includes the effect of the moisture 
variation on the heat transfer. An exact solution of the same problem 
described by Gupta [2] was later given by Cho [3]. Another exact so
lution of the problem without Gupta's assumption and with two more 
complicated models was presented by Mikhailov [4]. For the problem 
of freezing (desublimation) of humid porous half-space, Mikhailov 
also presented an exact solution [5]. 

In the following, sublimation of frozen moisture in a porous medium 
will be studied. An analytical model of the sublimation process taking 
place in a porous half-space is defined and exact solutions for tem
perature and moisture distributions as well as the position of the 
moving sublimation front are obtained. 

2 S t a t e m e n t of t h e P r o b l e m 
We consider a rigid solid porous half-space containing uniformly 

frozen moisture. The porous body exists in an environment having 
a very low pressure, so that there is practically only the vapour pres
sure of the moisture acting on the frozen phase. It is therefore assumed 
that, during the sublimation process, the vapor pressure acting on the 
frozen phase is equal to the environmental pressure which remains 
unchanged. Under this assumption, the sublimation process will take 
place at a fixed sublimation temperature corresponding to the vapor 
pressure acting on the frozen phase. 

For the purpose of formulation of the sublimation problem, the 
following assumptions are made: 

1 The vapor pressure of the moisture in the sublimation process 
is very low so that the vapor can be considered as an ideal gas. 

2 The frozen moisture is uniformly distributed in the porous 
half-space which is initially at a uniform molar concentration of the 
moisture, Cm,o- For the purpose of simplicity, the value of Cm,o is as
sumed to be greater than the value of the molar concentration of the 
vapor at the sublimation state, p0/RoTu, where pu and T„ are the 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
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vapor pressure acting on the frozen phase and the corresponding su
blimation temperature respectively, and J?o is the universal gas con
stant. 

3 The frozen humid body is initially at a uniform temperature T0, 
which is lower than the sublimation temperature T„. The sublimation 
process takes place when the temperature of the frozen body reaches 
the sublimation temperature. 

4 The porous body is sublimated by maintaining the surface at 
x = 0 at a constant molar concentration of the moisture, C m s , which 
is lower than the initial concentration Cm,n, and at a constant tem
perature Ts, which is higher than the sublimation temperature T„. 

5 In the frozen region, S(T) < x < °°, there is no moisture move
ment, where x - S(T) locates the sublimation front. In the vapor re
gion, 0 < x <S{T), there are heat and moisture flows. 

6 The convective terms in the vapor region are small and may be 
neglected. 

7 The thermophysical properties of each phase remain constant, 
but may differ for different phases. 

8 The Soret effect, or the thermal diffusion, gives rise to a mass 
flux which is normally very small relative to the normal Fickian flux, 
and may be neglected. 

The sublimation process can be presented by the following differ
ential equations. 

dTi(x,r) d2Ti(x,T) 
= a\ • • -, s(r) < x < •» 

d r dx2 

<>T2(X,T) d2T2(x,r) _ „ , N 
= a2 — , 0 < x < S ( T ) 

dr dxz 

dCm(x,T) i>2Cm(x,r) _ , , , 
• — O m -" • ,0<x < S ( T ) 

(1) 

(2) 

(3) 
dr dx2 

where a i and a2 are the volume averaged thermal diffusivities in the 
frozen and vapor regions, respectively, and am is the volume averaged 
mass diffusivity of the vapor moisture in the porous body. For eval
uation of the values of ai , a2 and am, the method described by Slattery 
[6] may be used. 

The initial and boundary conditions can be described as 

Ti(x,0) = T X K T ) = T0 

T 2 (0 ,T) = TS 

Cm(0,r) = Cm,« 

(4) 

(5) 

(6) 

On the sublimation front, there exists an equality between the tem
peratures, 

T I ( S , T ) = T2(S,T) = T„ (V) 

The heat and moisture mass balance at the sublimation front can be 
expressed as 

, dT2(s,r) dT2(s,r) ds(r) 
-«2 — ; + «i — r = Cm>0Mm L -dx 

dCm(s,T) 

i>x 

dx dr 

[Cm ,o-Cm(s,T)] 
ds(r) 

(8) 

(9) 
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3 S o l u t i o n of the P r o b l e m 
The system of equations (1, 2,4,5,7) and (8), describing the tem

perature distributions in the frozen and vapor regions in the sub
limation process in a porous medium is the same as that describing 
the temperature distributions in the solid and liquid regions in a 
melting process for a pure substance. Therefore, Neumann's solution 
[7] can be used to obtain the temperature distributions. The solution 
of equation (1) which satisfies the initial and boundary conditions (4) 
and (7) can be obtained as 

Tv - T0 
T1(X,T) = T0 + - -erfc (-M erfc Waz/aiX) V^Vaii" 

where X is a dimensionless constant having the following relation 

«(T) 

(10) 

X = - (11) 
2Va2T 

The solution of equation (2) which satisfies the boundary conditons 
(5) and (7) is expressed as 

T2(X,T) = T S - -
T„ 

erf (12) 
erf (X) WatTl 

Substituting equations (10-12) into equation (8), the constant X is 
determined by 

k2 

kl 

a i / T s - T „ \ e x p ( - X 2 ) 

a 2 \ r „ - T 0 ; erf(X) 

-exp [(-a2/ai)X2] 

erfc (Va2/aiX) 

_ \px a\Cm,oMmL 

kx(Tv - To) 
^ X 
oi 

The solution of equation (3) is chosen in the form 

Cm(x,T) = A + B erf 

(13) 

(14) 

where A and B are the constants of integration, which can be deter
mined by making use of the boundary conditons (6) and (9) as fol
lows. 

and 

A = Cm 

VTrX (Cmfi — Cm|S) 

\/am/a2 exp [(-a2 /om)X2] + yfir'k erf (Va 2 /amX) 

(15) 

(16) 

Substituting equations (15) and (16) into equation (14), the distri
bution of the molar concentration of the moisture is given by 

^mKX,TJ — Cm 

-\ArX (Cm,o — Cm>s) 

\Jamla2 exp [(-a2 /am)X2] + T/TT\ erf (y/a2/am\) 

Xerf (17) 

The solution of the molar concentration in the vapor region for the 
sublimation process, equation (17), has its limitation that the molar 
concentration of the vapor at x = s must not exceed the value of 
Pu/RoTu. 
Let 

Pu 

RoTu 

and 

^m 

(18) 

(19) 

The condition for the limitation of the sublimation process can then 
be obtained from equation (17) by putting x = s and Cm(s,r) s 

C < 

where 

\fircL exp (a2) erf (a) 

, / a 2 
A A / — 

(20) 

(21) 

For the purpose of discussion of the analytical results, the following 
dimensionless parameters are introduced. 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
«J l ' l _ ' U) 

KT = k,(T„-T0). ( 2 9 ) 

f/l 

u2 

?Y 
T„-
T2-
T • 
1 s 

l^m 

Cm,o -

X 

-To 
-To 
-Tu 

-Tu 

^m,s 

^m,s 

« 2 1 

L U : 

\l a2T 

£2 

ai 

, Cm 

a2 

aiCm,oMmL 
' k2(Ts - r„) 

_ kx{Tv - T0). 

•Tu) k2(T. 

Then equations (10, 12, 13) and (17) can be written in the dimen 
sionless forms as follows: 

Ui> 
erfc (yaai i | ) 

erfc (^/a2i\) 
(30) 

^ N o m e n c l a t u r e . 

A,B = constants of integration 
a = thermal diffusivity 
am = mass diffusivity 
a2i = dimensionless thermal diffusivity de

fined by equation (26) 
C = dimensionless molar concentration de

fined by equation (19) 
Cm = molar concentration of vapor mois

ture 
erf( ) = error function 
erfc( ) = complimentary error function 
exp( ) = exponential function 
k - thermal conductivity 
KT = dimensionless heat flux defined by 

equation (29) 
L = latent heat of sublimation 

Lu = Luikov number defined by equation 
(27) 

M = molecular mass 
p = vapor pressure 
pu — total pressure, or vapor pressure of 

moisture acting on the frozen phase 
Ro = universal gas constant 
S(T) = position of sublimation front 
T = temperature 
Tu = sublimation temperature 
U\ = dimensionless temperature defined by 

equation (22) 
U2 = dimensionless temperature defined by 

equation (23) 
x = space coordinate 

i) = dimensionless variable defined by equa
tion (25) 

8 = dimensionless molar concentration de
fined by equation (24) 

X = dimensionless constant expressed by 
equation (11) 

v = dimensionless latent heat of sublimation 
defined by equation (28) 

T = time 

Subscripts 

0 = initial condition in frozen region 
1 = frozen region, S(T) < x < <*> 
2 = vapor region, 0 < x <S(T) 
m = moisture 
s = at surface x = 0 
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KT=1.0 

100.0 

Fig. 1 Dimenslonless constant X as a function of dimenslonless latent heat 
of sublimation v with dimenslonless thermal dlffuslvlty a2i as a parameter and 
KT = 1.0 

Uz 1 -
erf (?)) 

exp (-X2) 

erf(X) 

erf (X) 

02i KT exp (-Q2iX2) 

erfc (VaiiX) 

\PK X erf (?//VLuj 

\PK v X 

Lu exp (-X2/Lu) + V ¥ X erf (X/VEu) 

(31) 

(32) 

(33) 

4 Discussion and Conclusions 
From equation (11), it can be seen that the motion of the sublima

tion front is proportional to the constant X which can be determined 
by equation (13). The higher the value of X, the faster is the movement 
of the sublimation front. Figures 1 and 2 show that X is a function of 
the dimensionless latent heat of sublimation, v, with 021 and KT as 
parameters, respectively. A larger latent heat of sublimation, v, yields 
smaller X and thus slower sublimation. Figure 1 shows the effect of 
the ratio of the thermal diffusivity in the vapor region to that in the 
frozen region, 021, on the sublimation speed; smaller 021 results in 
faster sublimation. Figure 2 indicates the effect of KT on the sub
limation speed. KT represents the ratio of the steady heat flux in the 
frozen region to that in the vapor region with the same heat conduct 
distance. It is shown that the lower the value of XT, the faster is the 
sublimation. The top curve in Fig. 2 with KT = 0 represents the case 
of that where the initial temperature in the frozen region is equal to 
the sublimation temperature. 

By making use of dimensionless representation, the temperature 
distributions in the vapor and frozen region, U2 and U\, and the molar 
concentration of the moisture in the vapor region, 6, are only functions 
of the combined coordinate 77. The dimensionless representation re
sults also significantly in a reduction of the number of parameters. 
When the value of the constant X is determined by equation (13), or 
from Fig. 1 or 2, U% is only a function of T), U\ is a function of -q with 
one parameter 021, and 8 is a function of ?j with Lu as a parameter. 

As an illustration, the distribution of the dimensionless tempera
tures and the dimensionless molar concentration of the moisture 
vapor are plotted in Fig. 3 with X = 0.4. For the fixed value of X, the 
temperature distribution in the vapor region, U% can be presented 
by only one curve as shown in Fig. 3. The effect of the ratio of the 
thermal diffusivity in the vapor region to that in the frozen region, 
02i, on the temperature distribution in the frozen region, Ui, is also 
shown in Fig. 3. We consider a high value of 021 resulting from a small 
value of a i . It is expected that the smaller the value of the thermal 
diffusivity, a\, the slower will heat diffuse into the frozen region, or 
the more will heat be absorbed by the material in the frozen region. 
Therefore, the smaller the value of ai , or the higher the value of a2i 
the steeper is the temperature profile in the frozen region, as shown 
in Fig. 3. We consider now a constant heat flux being supplied at the 
phase interface from the vapor region. A steeper temperature profile 
in the frozen region at the phase interface transmits more heat away 
from the interface into the frozen region. Therefore, less heat is 
available for sublimation of the frozen moisture. Hence, it can be 

0.01 
0.1 1.0 10.0 100.0 

Fig. 2 Dimensionless constant X as a function of dimensionless latent heat 
of sublimation v with dimenslonless heat flux KT as a parameter and a2i = 
0.8 

2 . 0 

1.0 

• U 2 + 1 7 

y 1 
\ 1 

Lu=\ 1 
SOL . 

. a 2 1 =o.4 

' / -0.6 

— 1 — ^ 7 ^ ^ 

/-0.8 

0.4 1.0 2 .0 

Fig. 3 Dimenslonless temperatures, U1 and U2, and dimensionless molar 
concentration 8 as functions of dimenslonless variable i\ with X = 0.4 

No Sublimation 

Sublimation Limit 

0 1.0 2.0 e( 
Fig. 4 Condition for the limitation of the sublimation process. 

concluded that an increase of the value of a 21 results in a decrease of 
the sublimation speed, as shown in Fig. 1. 

The dimensionless molar concentration of the moisture in the vapor 
region, 6, described by equation (33), has one parameter Lu for a fixed 
value of X. The Luikov number, Lu, represents the ratio of the mois
ture diffusivity to the thermal diffusivity in the vapor region. The 
higher the value of Lu, the higher is the capability of the moisture 
diffusing away from the phase interface, and therefore the flatter is 
the molar concentration gradient needed for the moisture diffusion. 
The effect of Lu on the molar concentration distribution is also shown 
in Fig. 3. 
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The condition for the limitation of the sublimation process, de
scribed by equation (20), is presented in Fig. 4. Sublimation can only 
take place in the region under the sublimation limit curve. The di-
mensionless parameter C is defined by equation (19), 

c -c 

For a fixed value of the sublimation pressure, either a high value of 
Cmfi or a high value of Cm,s gives a high value of C, In the sublimation 
process, a high value of C requires a slow motion of the sublimation 
front (that is a small value of X) or a high capability of the moisture 
diffusing through the vapor region (that is a high value of Lu) in order 
to maintain the process under the sublimation limit. The dimen-
sionless parameter a defined by equation (21), can be written as 

a = \\Ja.2lam = X/\/Lu 

Therefore it is expected that the higher the value of C in the sub
limation process, the lower is the value of a required as shown in Fig. 
4. 
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A Comparison of Thermal 
Performance of Two and Four Tube 
Pass Designs for Split Flow Shells 
Governing equations for heat transfer in a split flow heat exchanger with two tube passes 
are developed and solved. The expressions for the "temperature efficiency" P and 
"LMTD temperature correction factor", F are derived. F and P values for two tube pass 
and four tube pass are compared over the practical range of values of thermal flow rate 
ratio R and reduced thermal flux, r] (NTU). 

Introduction 
Split flow heat exchangers, designated as the "G-type" in TEMA 

standards [1] find extensive application in the process and power 
industries due to their relatively superior heat transfer and pressure 
drop characteristics. Schindler and Bates [2] present an excellent 
discussion on the merits of the split flow design over the conventional 
"E-type shell" construction. 

They have also derived the relationships between the temperature 
efficiency P, reduced thermal flux r) and thermal flow rate ratio R for 
split flow, two tube pass heat exchanger. Singh and Holtz [3] presented 
similar relationships for split flow, four tube pass exchanger. Although 
the relationships for four tube pass and two tube pass cases are 
mathematically completely different, one would suspect from physical 
reasoning that their actual performances may not be so dissimilar. 
One of the objectives of this paper is to compare the heat transfer 
performance of two and four tube pass arrangements in the mean
ingful range of the governing dimensionless parameters. Another goal 
in this paper is to derive heat transfer expressions for a split flow, two 
tube pass heat exchanger. This entails determining tube and shell side 
fluid temperatures as functions of the surface area coordinate; and 
of course, the relationships between P, i\ and R. Schindler and Bates 
[2] obtain these relationships by dividing the heat transfer region into 
two concurrent and one countercurrent subregion. They utilize in
tegrated heat transfer relations for each subregion in terms of (as yet 
undetermined) terminal temperatures; and appeal to temperature 
continuity across inter-subregion boundaries to determine the un
known terminal temperatures. Further manipulation of the mathe
matical expressions yields the desired relationships among P, JJ and 
R. The approach presented in this paper, on the other hand, is based 
on the first principles. Fundamental heat transfer relations for a 
differential element in a subregion are written. The resulting differ
ential equations are integrated. The constants of integration are found 
using temperature continuity across subregion interfaces. In this 
manner, the overall characteristics as well as details of the tempera
ture field are determined. The knowledge of the temperature profiles 
of the tubeside and shellside streams is essential in many design cal
culations. For example, the computation of tube/shell longitudinal 
stress in fixed tubesheet heat exchangers and U-bend stress in U-tube 
exchangers [4] require evaluation of the total longitudinal expansion 
of the tubes. Temperature profiles also reveal regions of inadequate 
or reverse heat transfer [3], locations of possible high thermal stress 
in the tubesheet, etc. In view of these considerations, the formulation 
in this paper seeks to synthesize the overall apparatus response from 
the elemental relationships. The difference from the Schindler, et al. 
solution is not so much in the conceptual approach as it is in the 
methodology. The thermal-hydraulic assumptions implied in the 
analysis are the traditional ones listed in reference [3] from (a) to (j>) 
(excluding (h)). A brief description of the analysis now follows. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division, 
March 21,1980. 

Analysis 
As shown in Fig. 1, the shell side stream enters the shell at the shell 

nozzle located midway along the shell. The shell stream subdivides 
into two equal substreams flowing in opposite directions in the upper 
half of the shell. Having traversed the two extremities of the shell, 
these two substreams cross over the longitudinal baffle and flow 
towards the outlet nozzle located midway along the shell length in the 
bottom half of the shell. The heat transfer region is subdivided into 
three subregions as indicated in Fig. 1. If A; is used to denote the 
surface area on tubes in subregion i, then we note that Ax = A3 = 
0.25A*; and A2 = 0.5A*, where A* is the overall heat transfer surface. 
To fix ideas, we set up a coordinate system in each subregion such that 
the origin of the coordinate A (tube surface area) is located in the 
plane where the shell side fluid enters the subregion, and the magni
tude of A increases in the direction of the shell side flow. Thus the 
origin of surface area parameter A in subregion 3 is at the left-hand 
tube sheet in Fig. 1. Noting that the shell side and tube side flows are 
cocurrent in subregions 1 and 3, and countercurrent in subregion 2, 
the following heat transfer relations can be readily written: 

0.5Ms5,dT = Mtdt; i = 1, 2, 3 

0.5MsdT = -U(T - t)dA 

(1) 

(2) 

Where Ms and Mt are shell side and tube side thermal flow rates, U 
is the overall heat transfer coefficient, T and t denote shellside and 
tubeside fluid temperatures at a typical elemental surface dA defined 
by surface coordinate location A. 5; characterizes the flow pattern 

Si = (-1)'' 

From equation (2), we have 

dT -2 (7 . 
dA' ( r _ i } M, 

(2a) 

(3) 

d2T -2UldT dt\ 
dA2 ~ Ms [dA dAJ 

Substituting for dt/dA from equation (1), we obtain a second order 
differential equation in T 

d2T 

dA2 

dT 
+ ai — = 0; 1 = 1, 2, 3 

dA 
(5) 

•zl 

mJiU 

V 

^-INTERFACE SUBREGION I a 2 

m —» A->- a 
4^r s rn 

if 5& INTERFACE SUBREGION 2 a 3 
TYR TUBE -J T 7 ~ 

Flg. 1 Schematic of split flow, two pass heat exchanger 
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where 

_2UI St) 

Ms \ 2R] 
(6) 

and R is the ratio of thermal flow rate on the tube side to that on the 
shell side; i.e., 

Mt R-
Ms 

Solution of equation (5) yields 

T = aii+bie-'"A;i = 1,2,3 

This yields, together with equation (3) 

MsaA 
t = ai + bi\l-

2U 
e-"-A;i = 1,2,3 

(6a) 

(7) 

(8) 

The special case where a; = 0 is treated separately later in this section. 
Six constants of integration, a;, 6; are evaluated by using interface 
conditions between the subregions and the boundary conditions, as 
follows. 

(i) Between subregions 1 and 2, (A = 0) continuity in T re
quires 

° i + bi = a2 + 62 

(ii) Similarly, continuity in t requires (at A = 0) 

Msa2\ 
a\ + 6i 

/ M.aA 

\ 217 I ' 
: 02 + &2 1 -

21/ 

From equations (9) and (10) we have 

02= by 
«2 

a2 = a i + 6i (-2) 

(9) 

(10) 

(11) 

(Ua) 

(iii) At the interface between subregions 1(A = Ai) and 3(A = 0), 
continuity of T yields 

where 

ax + M i = 03 + 63 

. = p-aiM 

(12) 

(12a) 

where 

an 02£*i /, M s a 2 
1 — 01 r 1 

a2 \ 2U ) a-2 

h\i 
Msa3\ 

2U I 

(15) 

- 1 

Furthermore, equation (12) gives 

a 3 = ax + 6i(0i - X ) (16) 

Finally, two boundary conditions may be specified as 

(v) T = Ti at A = 0 in subregion 1. 

(vi) t = t i a t A = 0 i n subregion 3. 

From equations (7) and (8), we obtain using the above condition: 

T1 = ai + 61 (17) 

(18) 

Hence 

Ti-h = b1 1 -

6 X = -

21/ 

(Ti - ti) 

X"3MS 

21/ 

(19) 

Finally 

Ti 

O i = -

/x«3Ms 

I 2t/ - » , ) + t i 

• » ! + 
2U 

(20) 

(iv) Continuity of tube side fluid temperature at the interface 
between subregion 2(A = A2) and subregion 3(A = A3) yields 

Thus all the constants of integration are expressed in terms of input 
data, and the temperature profiles of both shellside and tubeside 
fluids become completely known. 

It is of some interest to derive the relationship between temperature 
efficiency P, reduced thermal flux r\ and thermal flow rate ratio R 
where these nondimensional quantities are defined in terms of pre
viously introduced terms as follows. 

03 + 6363 ( > - ^ ) - 02 + b202 1 -
Ms a.2 

2U 
(13) 

P = -
tz-U 

Substituting for 02 and 62 from equations (11), (11a) and (13), we 
have 

(a) 

(b) 

(21) 

03 + M 3 11 - ~hf\ = ai + &i 
« i » 2 « i | _Msa2 

a.% a 2 2U 

From equations (12) and (13a), we have 

63= xb\ 

(13a) 

(M) 

Ti-h 

_ UA* 
V~ Mt 

R is defined by equation (6a). 
Noting that the tube outlet temperature t2 is given by the subregion 

1 solution for t at A = Ai, we have 

Mscci) 
t2 = a1 + bl6i\l 

Equations (18) and (22) yield 

2/7 
(22) 

.^Nomenclature-

A* = overall heat transfer surface 
Ai = heat transfer surface in subregion i 
ai, bi = constants of integration in subregion 

i 
A = surface area coordinate in a subregion 

with reference to its local coordinate sys
tem (Fig. 1) 

F4, F2 = LMTD correction factor for split 
flow four-tube pass and two-tube pass ex
changers, respectively 

Ms = thermal flow rate of shellside fluid 

Mt = thermal flow rate of tubeside fluid 
P = temperature efficiency (equation 

(21a)) 
Pi, P2 = temperature efficiency of four-tube 

pass and two-tube pass (split flow) ex
changer, respectively 

R = thermal flow rate (flow rate times spe
cific heat) ratio (equation (6a)) 

U = overall heat transfer coefficient 
T = shellside fluid temperature at a generic 

surface coordinate A 
t = tubeside fluid temperature of a generic 

surface coordinate A 
£1 = tube inlet temperature 
t2 = tube outlet temperature 
T\ = shell inlet temperature 
T2 = shell outlet temperature 
tj = number of transfer units (also referred to 

as reduced thermal flux in this paper) 
equation (216) 
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The expression for P now follows from equations (19) and (23) 

(23) 

tj-tj 2(7 

' Ti-ti 

(xa3 - etiBi) 

X«3MS 

(24) 

2V 

— (0i In 0 i - x In 03) ijrt 

i fl 2 x l n 0 3 1 — 0i 

(25) 

0i and x can be readily expressed in terms of dimensionless quantities, 
as follows. 

-r)R 
(a) 

\ 2Rj 

1 /) 2 l n 0 i , 20 2 ln0i /^ , In 

In 02 In 02 \ »). 

(26) 

f 21n0 
i 1 + — -
\ vR 

(c) 

1 

All necessary heat transfer relations are now available in terms of the 
conventional dimensionless parameters. 

Special case: Referring to equation (6), R = 0.5 makes a 2 zero. For 
this case the governing equation (equation (5)) becomes for i = 2 

d2T 

dA2 0 

which is integrated to yield 

T = a2 + b2A 

(27) 

(28) 

The corresponding expression for the tubeside fluid temperature 
follows from equation (8) 

t = a2 + 62 A-3 
2(7, 

(29) 

Using the boundary conditions as before, the following relationships 
between the constants of integration follow: 

where 

a2 = a i + 61 

b2 = ~a\bi 

&3 = xbi 

1 - 0i + 2 In 0i II + 

(30) 

"-I 
vRI 

< ( - ^ ) 

(3D 

- 1 

The expressions for P (equation (25)), bx (equation (19)), a i 
(equation (20)) remain unchanged. 

T e m p e r a t u r e Correc t ion F a c t o r 
Equations (25) and (26) completely characterize the heat transfer 

behavior of two tube pass split flow heat exchanger. For a given value 
oi »? and R the temperature efficiency P is readily evaluated. Thus the 
well-known ten Broeck Charts can be conveniently constructed for 
this geometry. Furthermore, the log mean temperature difference 
correction factor, (LMTD) F, can be computed using the basic rela
tionship 

ln-
1 - P 

1-PR 
(32) 

i j ( K - l ) 

It should be noted that the above equation shows F to be an explicit 
function of three variables, namely r), P and R. P can be expressed in 
terms of r) and R using equation (25); thus F becomes a function of 
r] and R only. In principle it is possible to express r\ in terms of P and 
R by rearranging and manipulating equation (25) and thus render F 
to be a function of P and R, which is the most common form of rep
resentation in the so-called "temperature correction factor" charts. 
However, t) is a highly complex function of P and R, requiring an it
erative solution to compute r\ for given values of P and R. It is most 
convenient to generate P for selected values of r) and R (using equation 
(25)) and then proceed to compute F using equation (32). The design 
charts are thus generated for practical use. Schindler and Bates [2] 
published such charts for the two pass split flow heat exchanger; 
hence, these are not presented here. It is, however, of some interest 
to examine how the LMTD correction factor, F, and temperature 
efficiency P compare for two and four tube pass split flow geometries. 
The values of P and F are calculated for four tube pass using the Singh 
and Holtz [3] solution. The differences AP and AF are plotted as 
functions of r\ (with R as the parameter) in Figs. 2 and 3 where 

AP = P 2 - P4 ; and AF = F2-Fi 
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Fig. 4 Differential temperature correction factor AF versus NTU 

The plots for AP (Figs. 2 and 3) show that the difference in temper
ature efficiency is highest around R = 0.7, and decreases rather rapidly 
for greater or smaller values of R. AP is also seen to be a monotonicalfy 
increasing function of t). AF is plotted versus t] in Pig. 4 with R as 
parameter. Greater values of AF appear to correspond with large r; 
and small R. In the most meaningful design range, however (r) < 3), 
we notice that AF is less than 0.05. Thus the thermal performance of 
the two geometries is nearly equal in this range. Figure 5 shows AF 
as a function of P. Thus, Fig. 5 may be used to determine the relative 
efficacies of two and four pass geometries directly from the input data 
usually available (P and R). The following conclusions may be drawn 
from the foregoing discussion: 

1 Two and four pass split flow designs have nearly identical op
erating performance characteristics in the meaningful design 
range. 

2 Two pass design has a performance edge over four pass for rel-
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Fig. 5 Temperature efficiency, P 

i.o 

atively small R (<1.6). Four pass design becomes increasingly more 
efficient for greater R (Fig. 4). This fact is further borne out by Fig. 
5. However, four tube pass design may not be suitable for high R 
values due to tubeside pressure drop limitations. 

3 The figures presented here should enable a practicing engineer 
to make rapid comparison between two and four (or more) pass con
figurations for his particular problem. 

4 It can be deduced from the foregoing that in the meaningful 
range of design data, six and more pass geometries will behave like
wise. Thus the temperature performance curves for two pass and four 
pass currently available can be used to predict the performance of 
multipass designs with satisfactory accuracy. 
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Similarity Rule for 
Solidification Heat Transfer 
wi th Change in Volume 

N. Shamsundar1 

Nomenclature 
Bi = Biot number, hL/k 
c = specific heat of solid PCM 
F = frozen fraction, volume of solid/volume of enclosure 
h = convective heat transfer coefficient 
k = thermal conductivity of solid PCM 
L = characteristic dimension; see Fig. 2 
Q = instantaneous heat flux on cooled surface 
Qo = value of Q when solidification commences 
Ste = Stefan number, c(Tsat — Tt)/X 
t = time, counted from start of solidification 
Tsat = melting temperature 
Tb = temperature of coolant fluid 
A = latent heat 
As-, Pi = density of solid PCM, liquid PCM 
T = dimensionless time, Slak(Ts&t - Ti,)dt/ps\L

2 

<p = similarity function, (Qo/Q — 1)/Bi 

Introduction 
Solidification governed by heat conduction in the solid and con

vective heat removal at the boundary of the solid is a problem en
countered in many applications. In almost all applications, control 
of the microstructure or some such important aspect is achieved by 
varying the coolant flow rate and/or the temperature. The analysis 
of the heat transfer process for irregularly shaped multidimensional 
objects under such conditions is generally performed by (usually) 
expensive finite-difference [1] or finite-element [2] numerical 
methods. A similarity rule discovered recently [3] enables a substantial 
reduction in computational effort. For a given geometry, the appli
cation of the similarity rule makes only two numerical calculations 
of phase change necessary. In these calculations, the coolant flow rate 
and temperature remain constant in time. The response to any 
specified timewise variation of coolant flow rate and temperature is 
then obtained by the analytical or numerical integration of a first-
order ordinary differential equation in time. It is apparent that the 
similarity rule plays in solidification problems the role of a poor cousin 
to Duhamel's theorem. 

As presented in [3], the similarity rule applies only if the volume 
change attending solidification is ignored. The aim of this note is to 

1 Assistant Professor, Department of Mechanical Engineering, University 
of Houston, Houston, Tex. 77004, Assoc. Mem. ASME. 
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revalidate the similarity rule when the effects of the volume change 
are too large to be ignored. 

Analysis 
Consider a lump of matter that is initially molten, and is caused to 

cool by transferring heat convectively to a cooling fluid which flows 
past the walls of the container surrounding the lump. The convective 
coefficient and the temperature of the coolant are assumed spatially 
uniform, but may vary with time. Initially, the superheat in the molten 
liquid is removed by the coolant until solidification is initiated at the 
cooled surface. Let the total heat flux on the cooled surface at this 
instant be Qo. Subsequently, the molten liquid is separated from the 
cooled surface by the growing solid layer. Let the heat flux on the 
cooled surface at time t be Q. Then, the similarity rule states that 

• The quantity (Qo/Q - 1)/Bi is a function of the solid fraction 
only. 

• The shape and location of the solid-liquid interface depend on 
the solid fraction only. 

For strict validity, it is necessary that (1) sensible heat and super
heat are negligible compared to latent heat, (2) the temperature on 
the cooled surface is spatially uniform. Under these conditions, the 
rule can be proved mathematically. In practice, these conditions are 
not met, although many important classes of problems are such that 
these conditions are approximately satisfied. Numerical calculations 
show that even when these conditions are violated considerably the 
validity of the similarity rule is singularly unimpaired [3]. 

The main consequence of the reduction in volume accompanying 
solidification is the development of a shrinkage cavity. The cavity may 
be well-dispersed as porosities, or it may be in one piece. Obviously, 
well distributed porosities serve only to reduce the effective con
ductivity and volumetric latent heat of the substance, and the simi
larity rule remains valid. Consider, then, a massive, single cavity such 
as that frequently observed during solidification of salts and waxes 
with moderate rates of cooling (freezing time ~ 1 hr). 

In our model, the cavity is treated as a single void across which there 
is no heat transfer, growing at the top of the container. At some instant 
during the solidification process, a vertical cross-section will be as 
shown in Fig. 1 using full lines. During a small interval of time after 
this instant, the interface between solid and liquid will move from the 
position 2 to the position 2 ' (shown by dashes). The calculation of 
the position 2 ' is performed as if there were no density change during 
the time interval using, say, a finite-difference method. Next, the free 
surface AB is moved to a position A'B' such that (1) A'B' is horizontal; 
(2) A' and B' lie on 2 ' ; and (3) mass is conserved, i.e., volume AA'B'B 
= cross-hatched volume X (ps/p\ — 1). 

Following the adoption of this model, the invocation of the simi
larity rule presents no difficulties, because the only effects of the 
cavity upon the temperature field in the solid are: (1) the addition of 
one more adiabatic boundary, namely, the boundary of the cavity, and 
(2) nonuniformities in wall flux adjacent to the cavity. A perusal of 
the conditions for the validity of the similarity rule shows that the 
additional adiabatic boundary has no effect on these condtions pro-
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Fig. 1 Sketch of cross-section during solidification, showing solid, liquid and 
cavity at time f and time t + At 

vided that, in comparing cases with different Biot numbers, the 
density ratio p\/ps is the same. Nonuniformities in wall-flux violate 
requirement (2) of the similarity rule. Nevertheless, the rule may be 
expected to be approximately valid because, as shown in [3], moderate 
variations of wall-flux do not seem to affect the rule. As far as re
quirement (2) is concerned, it is immaterial whether the nonunifor-
mity is caused by geometry or by a cavity. Hence, before applying the 
similarity rule to problems involving a cavity, one should ascertain 
if the cavity introduces nonuniformities more severe than those arising 
from the geometry of the container. An important consequence of this 
state of affairs is that the final shape of the cavity is independent of 
the cooling rates existing during the solidification process. This is in 
agreement with the conclusions drawn in [4] from numerical calcu
lations based on the present model. 

Results and Discussion 
The shrinkage model just described was implemented via an en

thalpy-based finite-difference method in order to solve a model 
problem. This calculation, presented in [4], pertains to two-dimen
sional solidification of a PCM in the 2 X 1 rectangular container shown 
as an inset in Fig. 2. Results for parameters values p\lps = 0.8,0.9, and 
l,2 Biot number = 0.1,1, and 10, and Stefan number = 0.01,0.1 were 
presented in the form of Q/Qo and solid fraction plotted against a 
dimensionless time-variable. The results to be presented in this paper 
were obtained by replotting the earlier results in terms of the simi
larity variables. 

Figure 2 shows the outcome. That the similarity rule is valid can 
be concluded by observing the closeness of the curves for Bi = 0.1 and 
Bi = 10 for each of the three density ratios. The small separation that 
does exist is caused by violation of condition (2) of the similarity rule. 
As explained in [3], the vicinity of the square corner has large non-
uniformity in surface temperature. The local surface heat flux dis
tributions presented in [4] show that nonuniformities caused by the 
cavity are minor compared to those caused by the corner away from 
the cavity. This explains why shrinkage does not seem to affect the 
validity of the similarity rule in this case. 

An interesting observation is that during the early stages of solid
ification there is little influence of density change to be seen. This 
finding can be explained when it is observed that, in these stages, the 
cavity is small and cannot possibly have much influence. During later 
stages, the similarity curves separate and order themselves according 
to the density ratio. These findings are in agreement with comments 
made in [4] concerning the curves of frozen fraction against time and 
heat flux against time. 

In order to understand the results better and to present them in 
a more convenient form for possible applications, we shall replot the 
results shown in Fig. 2 on a different basis. In this, we shall look for 
guidance to the similar problem of freezing with negligible density 
change in a cylindrical container. The quasi-stationary formula given 

2 For i>\lp„ = 1, the cross-section considered corresponds to the bottom half 
of a square container that is cooled oil all four sides uniformly. 

FROZEN FRACTION, F = V, / VT 0T«. 

Fig. 2 Similarity function plotted against frozen fraction, showing effect of 
density change 

by London and Seban [5] for this case is equivalent to <j> = —V2 ln(l 
— F). Therefore, it seems logical to try plotting the similarity function 
against log [1/(1 — F)\ for our problem. However, a little reasoning 
will show the need for slightly modifying this quantity to reflect the 
presence of density change. 

It helps at this point to bring up the interpretation of the similarity 
function in terms of the conduction shape factor S between the 
solid-liquid interface and the convectively cooled surface. In fact, 0 
= P/LS, where P is the perimeter of the container, as shown in [3]. At 
the termination of solidification, the solid-liquid interface vanishes, 
•S becomes zero and <j> becomes infinite. These considerations show 
that the new abscissa variable should be such that it is zero at F = 0, 
infinite at the end of solidification (when F = p\/pa), and it should 
become log [1/(1 — F)] for ps = p\. Such a variable is log [1/(1 — F 
Ps/p\)] = log (mtotai/miiquid).3 

The plot of ip against log [1/(1 - Fpjp\)} is shown in Fig. 3. To 
preserve clarity, the results for the case p\lps = 0.9 are omitted. For 
purposes of comparison, the result for the cylinder is also shown. The 
curves have separated with respect to pjps at all times, the crossovers 
of Fig. 2 have been eliminated, and the ordering with respect to p\lps 

is in a direction opposite to that in Fig. 2. It is pleasing to observe how 
similar all the curves are to the one for the cylinder, and that they are 
almost straight lines. This finding enables curves for values of p\lps 

and Bi intermediate to those used in Fig. 3 to be obtained by drawing 
interpolatory straight lines. 

For applications, one may wish to obtain the dependence of F and 
Q on time. This can be performed in a straightforward way by 
applying the energy conservation principle. As explained in [3], the 
dimensionless time r is given by 

tdrldF = 1/Bi + <MF),T = 0 a t F = 0, 

which is an ordinary differential equation for r. If Bi is constant or 
a known function of F, this equation can be solved by evaluating 
J 0 <l>dF. Since 0 may be approximated as a linear function of log [1/(1 
— F Ps/pi)], analytical expressions for r in terms of F can be ob
tained. 

Example. Sodium nitrate inside long containers with 40 mm X 
20 mm cross-sections is cooled by air flowing across the walls. If the 
air flow varies so as to result in a Biot number variation given by Bi 
= 10 + 15F, and the air temperature varies according to Tj, = 275 — 
40t, t being in hours and T/, in °C, find 

1 the solidification time 
2 the heat flux when half the mass has solidified, and 
3 the heat flux and amount of solid at t = 20 min. 

3 This variable is suitable for problems involving two- or three-dimensional 
cavities, provided the temperature distribution is two-dimensional. For cavities 
associated with three-dimensional temperature distributions, other variables 
suggest themselves; for example, for freezing in a sphere, l/\/(l — Fpslp\) " 
1. 
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Solution. The necessary properties of sodium nitrate are: T s a t 

= 305°C, k = 0.57 W/m-°C, p„ = 2260 kg/m3, pi = 1900 kg/m3, A = 182 
kJ/kg. 

For pi/ps = 1900/2260 = 0.84, and Bi ranging from 10 to 25, we see 
from Fig. 3 that <j> » 0.5 In [1/(1 - F pslp\)\. From the equation for 
dr/dF, we obtain the following results after integration: 

d F / B i + I 4>dF 
o Jo 

= f dF/(10 + 15F) + P 0.5 In [1/(1 - 1.19F)] di? 
Jo Jo 

= (1/15) In (1 + 1.5F) 

+ [1.19 F - (1 - 1.19 F) In 11/(1 - 1.19 F)}/2.38 (1) 

1 The solidification time is obtained by using F = p\lps = 0.84 in 
the above equation. The result is T = 0.237. To obtain the physical 
time, we have to solve the equation 

T = (k/psXL2) C'(Tmt-Tb)dt 
Jo 

= (k/ps\L
2) (30t + 20t2) = 0.237 (2) 

for t. This equation has only one positive root, t = 0.48 hr. 
2 The heat flux per unit length perpendicular to the cross-section 

is 

Q = Q ihL (T s a t - Tb) = 4 hh (T s a t - Tb)/(1 + Bi0) (3) 

for F = 0.42, Bi = 16.3 and </> = 0.347. In order to obtain Tb it is nec
essary to find t. Performing a calculation similar to that of part (1), 
we get T = 0.049 and t = 0.12 hr. Using these results in equation (3), 
we get T s a t - Tb = 34.8°C and Q = 194W/m. 

3 For t = 20 min, T = 0.152 from the left part of equation (2). With 
this value of T, equation (1) is solved by trial and error to get F = 0.73 
or 87 percent by mass of solid. Next calculations are made as in part 
(2) to obtain Bi = 21, </> = 1.02, T s a t - Tb = 43°C, and Q = 93 
W/m. 

It is of interest to compare the results obtained above with estimates 
based upon Bi = constant = 15 and TBat -Tb = constant = 40°C. The 
estimates are (1) t = 0.48 h, (2) Q = 22 W/m, (3) Q = 74 W/m, 92 
percent solid. If, for purposes of estimation, shrinkage is also ignored 
and the mean of ps and pi is used, the estimates are (1) t = 0.69 h, (2) 
Q = 184 W/m, (3) Q = 91 W/m, 78 percent solid. Comparing these 
estimates to the results given earlier shows the necessity of considering 

the effects of variable Bi and Tb and of density change, the more so 
for smaller values of Bi. 

C o n c l u s i o n s 
The similarity rule remains valid with no modification when the 

shrinkage cavity is either concentrated at the top of the container, or 
when finely dispersed pores are formed. By plotting the similarity 
function 0 against log [1/(1 - F pjp\j\, plots that are almost straight 
lines are obtained if the container is rectangular. Such a representa
tion facilitates interpolation for results pertaining to intermediate 
parameter values and enables obtaining analytical formulae for the 
freezing time and heat flux in terms of the frozen fraction F. 
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Applicability of the Bubble Flux 
Density Concept 

R. L. Judd1 

Introduction 
Several years ago, Shoukri and Judd [1] advanced a theory for in

corporating the effect of surface conditions in the prediction of nu
cleate boiling heat transfer. It was shown that if the surface charac
terization parameters m and C were known for a particular boiling 
surface as the result of fitting the relationship 

(N/A)rc = C ( l / r c )" (1) 

to a set of experimental measurements obtained with water boiling 
on the surface where (N/A)rc is the cumulative active site density for 
those cavities having radii equal to or greater than rc, then the number 
of bubbles emitted per unit area per unit time (bubble flux density 
$ ) could be predicted. A simple relationship was found to correlate 
heat flux QIA with bubble flux density $ irrespective of the surface 
finish involved when the theory was tested with two sets of experi
mental data for water boiling on copper surfaces having various fin
ishes taken from Shoukri [2] and Singh [3], respectively. The inference 
drawn from these successful correlations was that the bubble flux 
density determined by the theory encompassed all the surface effects 
although the need to determine the surface characteristics as de
scribed by the empirical constants m and C restricted the usefulness 
of the theory. Although water data were used exclusively to confirm 
the theory, Shoukri and Judd also indicated how the theory might be 
modified to incorporate boiling organic fluids. The purpose of this 
short technical note is to perform an analysis as suggested by the 
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Fig. 3 Similarity function plotted against total mass of PCM/mass of liquid 
PCM 

Solution. The necessary properties of sodium nitrate are: T s a t 

= 305°C, k = 0.57 W/m-°C, p„ = 2260 kg/m3, pi = 1900 kg/m3, A = 182 
kJ/kg. 

For pi/ps = 1900/2260 = 0.84, and Bi ranging from 10 to 25, we see 
from Fig. 3 that <j> » 0.5 In [1/(1 - F pslp\)\. From the equation for 
dr/dF, we obtain the following results after integration: 

d F / B i + I 4>dF 
o Jo 

= f dF/(10 + 15F) + P 0.5 In [1/(1 - 1.19F)] di? 
Jo Jo 

= (1/15) In (1 + 1.5F) 

+ [1.19 F - (1 - 1.19 F) In 11/(1 - 1.19 F)}/2.38 (1) 

1 The solidification time is obtained by using F = p\lps = 0.84 in 
the above equation. The result is T = 0.237. To obtain the physical 
time, we have to solve the equation 

T = (k/psXL2) C'(Tmt-Tb)dt 
Jo 

= (k/ps\L
2) (30t + 20t2) = 0.237 (2) 

for t. This equation has only one positive root, t = 0.48 hr. 
2 The heat flux per unit length perpendicular to the cross-section 

is 

Q = Q ihL (T s a t - Tb) = 4 hh (T s a t - Tb)/(1 + Bi0) (3) 

for F = 0.42, Bi = 16.3 and </> = 0.347. In order to obtain Tb it is nec
essary to find t. Performing a calculation similar to that of part (1), 
we get T = 0.049 and t = 0.12 hr. Using these results in equation (3), 
we get T s a t - Tb = 34.8°C and Q = 194W/m. 

3 For t = 20 min, T = 0.152 from the left part of equation (2). With 
this value of T, equation (1) is solved by trial and error to get F = 0.73 
or 87 percent by mass of solid. Next calculations are made as in part 
(2) to obtain Bi = 21, </> = 1.02, T s a t - Tb = 43°C, and Q = 93 
W/m. 

It is of interest to compare the results obtained above with estimates 
based upon Bi = constant = 15 and TBat -Tb = constant = 40°C. The 
estimates are (1) t = 0.48 h, (2) Q = 22 W/m, (3) Q = 74 W/m, 92 
percent solid. If, for purposes of estimation, shrinkage is also ignored 
and the mean of ps and pi is used, the estimates are (1) t = 0.69 h, (2) 
Q = 184 W/m, (3) Q = 91 W/m, 78 percent solid. Comparing these 
estimates to the results given earlier shows the necessity of considering 

the effects of variable Bi and Tb and of density change, the more so 
for smaller values of Bi. 

C o n c l u s i o n s 
The similarity rule remains valid with no modification when the 

shrinkage cavity is either concentrated at the top of the container, or 
when finely dispersed pores are formed. By plotting the similarity 
function 0 against log [1/(1 - F pjp\j\, plots that are almost straight 
lines are obtained if the container is rectangular. Such a representa
tion facilitates interpolation for results pertaining to intermediate 
parameter values and enables obtaining analytical formulae for the 
freezing time and heat flux in terms of the frozen fraction F. 
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Applicability of the Bubble Flux 
Density Concept 

R. L. Judd1 

Introduction 
Several years ago, Shoukri and Judd [1] advanced a theory for in

corporating the effect of surface conditions in the prediction of nu
cleate boiling heat transfer. It was shown that if the surface charac
terization parameters m and C were known for a particular boiling 
surface as the result of fitting the relationship 

(N/A)rc = C ( l / r c )" (1) 

to a set of experimental measurements obtained with water boiling 
on the surface where (N/A)rc is the cumulative active site density for 
those cavities having radii equal to or greater than rc, then the number 
of bubbles emitted per unit area per unit time (bubble flux density 
$ ) could be predicted. A simple relationship was found to correlate 
heat flux QIA with bubble flux density $ irrespective of the surface 
finish involved when the theory was tested with two sets of experi
mental data for water boiling on copper surfaces having various fin
ishes taken from Shoukri [2] and Singh [3], respectively. The inference 
drawn from these successful correlations was that the bubble flux 
density determined by the theory encompassed all the surface effects 
although the need to determine the surface characteristics as de
scribed by the empirical constants m and C restricted the usefulness 
of the theory. Although water data were used exclusively to confirm 
the theory, Shoukri and Judd also indicated how the theory might be 
modified to incorporate boiling organic fluids. The purpose of this 
short technical note is to perform an analysis as suggested by the 

1 Professor, McMaster University, Hamilton, Ontario, Canada L8S 4L7 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division July 
21, 1980. 

Journal of Heat Transfer FEBRUARY 1981, VOL. 103 / 175 
Copyright © 1981 by ASME

  Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



theory in order to show that the bubble flux density concept is ap
plicable to methanol as well. 

Analysis 
Singh, et al. [4] presented experimental results for both water and 

methanol boiling on the same copper surfaces having varying degrees 
of roughness obtained by different preparation techniques. A plot of 
cumulative active site density (N/A)rc versus effective cavity radius 
p (for water p = rc) taken from this reference is depicted in Fig. 1. The 
slope and intercept of the straight lines correlating the water data in 
this graph were used to obtain the values of m and C required for the 
present analysis, yielding the values presented in Table 1. 

The values tabulated are admittedly somewhat imprecise because 
of the obvious difficulty involved with determining the slopes and 
intercepts of the lines plotted in Fig. 1; unfortunately the values used 
to plot the data points were not tabulated in reference [3] so that it 
was not possible to obtain the surface characterization parameters 
m and C by linear regression. However, complete experimental data 
for water and organics boiling on the same surface under varying 
conditions of surface finish are very rare indeed so that there was no 
reasonable alternative to proceeding in this manner. 

Plotting (N/A)rc versus p for water and methanol on a single graph 
simplifies the determination of rj = p/rc according to the procedure 
described in reference [1]. This parameter is essentially the ratio of 
the effective cavity radius for methanol at a particular level of heat 
flux to the cavity radius for water at the same level of heat flux which 
can be readily obtained from Fig. 1 by means of a scale and dividers. 
The values corresponding to each of the methanol data points plotted 
in the graph are listed in Table 2. 

In accordance with the theory developed in reference [1], computer 
programs were written to solve for the bubble growth time te in the 
relationship 

lx] : v ( ? 2 + 3 5 ' 4 X 

10* 

VTS- (2) 

where 

y = —= Ja V^£ and X = 0.4215 /? V 1ogc 

g(.Pl ~ Pu) 

and the bubble waiting time tw in the relationship 

rc = 
2K \l + cos /?, 

Ju, ± \ / 7 yf-
IA/(0W - emt) 

\ \Twae 
(1 + cos /3)K (3) 

where 

K 
V tw + 

7» = 1 - - E •2m A O Z I ] 2 m + 1 

V tw + tg) ir m=om!(2m + 1)2 

Cm = 2(2m - l )C m _i and C0 = 1 

The results of these two computer programs were combined according 
to 

f(rc) 
CMJ ~r t u 

(4) 

in order to be able to predict the frequency of bubble formation for 
methanol boiling on a copper surface f(rc) as a function of cavity ra
dius rc and superheat AT = 6W — dsat for the special case of subcooling 
#sat = 0. Subsequently, another computer program was written to 
predict the bubble flux density $ in accordance with 

/"r'mii fir A 

* = mC m±dre (5) 

in which m and C were the values obtained by fitting the data points 
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Fig. 1 Observed cumulative site density distribution lor water and methanol 
abstracted from reference [4] 

Table 1 Surface characterization parameters 

Finish 

0.3 p. 
2 - 0 
4 0 0 - C 
Ground 

Table 2 

Finish 

m 

-5.6 
-9.7 

-12.7 
-15.5 

C 
(Sites/m2) 

1.90 * 10-2 7 

1.41 * 10-4 9 

1.28 * 10"64 

1.71 * 10"78 

Ratio p/rc for methanol 

(N/A)rc 

(Sites/m2) 
V 

<-> 

0.3 ft 

2 - 0 

400-C 

Ground 

5400 
12400 
36900 

2500 
10000 
29100 

5100 
16400 
48000 

6200 
31300 
54400 
66300 

0.187 
0.189 
0.191 

0.191 
0.210 
0.225 

0.174 
0.186 
0.195 

0.188 
0.195 
0.201 
0.202 

obtained by plotting (N/A)rc versus rt. for water. The integration 
limits refer to the size of the largest and smallest cavities which are 
able to remain active at a particular level of superheat according to 
classical nucleation theory. The computation is relatively insensitive 
to the value of rCmm which was arbitrarily set at 2.5 * 10 - 2 mm for the 
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Fig. 2 Boiling heat flux/superheat correlation for water and methanol ab
stracted from reference [4] 

same reasons given in reference [1] but rCall 

the relationship 

2<rTsat 
rCn 

1 
: — * A T 

, was now determined by 

(6) 

Physical properties appropriate to methanol boiling at atmospheric 
pressure were used throughout this analysis and the values of AT used 
were obtained from Fig. 2 and similar diagrams found in reference [3] 
corresponding to the other surface finishes investigated. 

Discussion 
When the values of nucleate boiling heat flux (QJVBMT) were 

plotted against bubble flux density $, the data points were observed 
to cluster together as illustrated in Fig. 3. The implication of this 
observation is that a single relationship exists between heat flux and 
bubble flux density for the particular surface-liquid combination ir
respective of surface finish. Furthermore, it would appear that boiling 
heat flux is directly proportional to bubble flux density which is en
tirely consistent with the assumption that each bubble is responsible 
for the transfer of a fixed amount of energy from the surface to the 
liquid in the isolated bubble regime. However, it is important to be 
aware that the bubble flux density used in plotting Fig. 3 was pre
dicted from theoretical considerations; further confirmation of the 
relationship between boiling heat flux and bubble flux density will 
have to await experimental determination of these parameters. 

While it was expected that the bubble flux density concept would 
draw the results for water and methanol together, it is somewhat 
surprising that the data points for the two different fluids would tend 
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to cluster about the same line. The mechanism by which the energy 
transfer associated with each bubble is accomplished cannot be de
duced from this sort of analysis, and since there is no reason to believe 
that a water bubble would be responsible for the transfer of the same 
amount of energy as a methanol bubble under the same boiling con
ditions, the apparent agreement may simply be fortuitous. Never
theless, it is significant that this treatment of the data is capable of 
unifying the results arising from nucleate boiling experiments per
formed with different surface finishes, indicating that nucleate boiling 
heat flux can be predicted by a relationship of the form 

AT 
• = Constant * <i> = Constant * mC 

'Jr.-
' Z('-c) 

,. m+1 
drc (7) 

where 

and 

1 2o- T„ 

rj Puhfl,AT 

rcm„ - " large value 

In this relationship, the surface condition is completely incorporated 
in the surface characterization parameters m and C. The difficulty 
with this approach to predicting nucleate boiling heat flux remains 
that its use is restricted to those situations where m, C and rj are 
known in advance which in the present circumstance requires ex
periments to have been performed already. Consequently, no further 
progress with this approach is possible until some way is devised to 
predict these parameters a priori. 
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The Effect of Crossflow at the 
Entrance on Heat Transfer 
Enhancement in Tubes 

D. E. Metzger1 and J. V. Cordaro1 

Nomenclature 
d = tube inside diameter 
h = heat transfer coefficient, based on (t — tb) 
k = fluid thermal conductivity 
L = tube length 
Nu = average Nusselt number, hd/k 
Re = Reynolds number, Vd/v 
t = tube temperature 
tb = average fluid bulk temperature in tube 
V = bulk average axial fluid velocity in tube 
Vc = upstream cross-flow channel velocity 
V* - velocity ratio, Vc/V 
v = fluid kinematic viscosity 

Introduction 
Flow distribution from a supply duct or manifold into multiple 

branch tubes is a situation which very frequently occurs in a wide 
variety of applications. In this situation, the flow entering the branch 
line will generally have a component of velocity that is perpendicular 
to the axis of the branch tube. Depending on the number of branches, 
the size of the supply duct, etc., the perpendicular velocity component 
at the entrance to a particular tube can have a very wide range of 
values compared to the mean axial velocity in the tube. Under these 
circumstances it is expected that this crossflow velocity will induce 
a secondary flow in the branch tube. In turn, the secondary flow will 
produce heat transfer coefficients in the branch tube higher than those 
normally associated with an axial flow entrance condition. 

Despite the prevalence of this type of flow situation in various heat 
exchange devices, there are few prior results available that can be used 
to predict the heat transfer rates. Measured heat transfer coefficients 
have been presented for flow in the vicinity of a tee-shaped junction 
between one inlet and two outlet tubes [1] and for flow in the vicinity 
of right-angle mitred bends in a single tube [2]. More recently [3], 
measurements have been made in the main line or supply tube just 
downstream of fluid withdrawal to a branch tube; but no measure
ments were made in the branch tube itself. Although not directly 
applicable to the present situation, these prior studies demonstrate 
significant enhancement of heat transfer associated with the induced 
secondary flow. It is reasonable to expect similar behavior in tubes 
supplied from a crossflow. 

In the present study, an apparatus was designed and constructed 
to allow determination of the circumferentially and axially averaged 
heat transfer coefficient in short branch tubes for a wide range of 
crossflow velocities and tube Reynolds numbers. The branch tubes 
were aligned perpendicular to the supply duct, and air was used as 
the test fluid. Three different circular cross-section branch tube di
ameters were used in the study, with overlapping length-to-diameter 
ratios spanning a range of 5 to 20. The flow velocity in the supply duct 
upstream of the branch tube was systematically varied from zero up 
to nearly 30 times the mean axial branch tube velocity. Branch tube 
Reynolds numbers based on mean axial velocity were varied from 
10,000 to 100,000. Measured results with entrance crossflow are 
compared with measured zero-crossflow results obtained in the same 
test sections. 

Experiments 
The experiments were conducted in an apparatus with inter

changeable instrumented branch line tubes leading from a primary 
flow channel, as shown in Fig. 1. Dry, filtered air passed through a 
primary flow metering section consisting of both orifice and laminar 
flow elements with the laminar flow element used for low flowrates. 
A similar metering section is used to measure the branch line flow 
downstream of the instrumented tubes. Plenums were located at both 
upstream and downstream ends of the primary channel and down
stream on the branch line. Downstream valves on both exit plenums 
were used to control the flow split and branch tube Reynolds 
number. 

The primary channel is constructed of 0.32 cm wall thickness rec
tangular aluminum tubing with inside dimensions 2.54 cm by 1.27 cm. 
The flanged ends of the channel are faired to the channel dimensions 
as shown in Fig. 1. The branch line flow is withdrawn from the center 
of one long side of the channel through interchangeable plugs with 
circular hole diameters matching the three branch tube diameters 
used in the study: 0.32, 0.48, and 0.64 cm. 

The branch line tubes were fabricated from high conductivity 
copper cylinders with an outer diameter of 1.65 cm. For each of the 
three tube inner diameters four different length tubes were made with 
length-to-diameter ratios of 5,10,15, and 20. 

Each of the interchangeable copper tubes is instrumented with 
thermocouples and the tubes are wrapped with electrical resistance 
heating wire. The assembly is then surrounded with an insulating 
cylindrical jacket. The heaters are used to preheat the copper tubes 
prior to each test run. The primary and branch flows are adjusted to 
desired values during the heating phase. When steady flow velocities 
and temperatures and a tube temperature of approximately 70°C are 
achieved, the heater power is reduced to zero and the copper tube is 
allowed to cool in the presence of the flow through the branch line. 

The heat transfer coefficients associated with the branch flow, 
averaged over the tube length, were determined from the cooling 
transients. The high thermal conductivity and thick walls of the 
copper tubes serve to even the spatial temperature distribution in the 
tube and allow use of a single lumped capacitance model of the tran
sient response for data reduction purposes. The adequacy of this 
approach was examined carefully at the outset of the test program. 
Additional details on the experimental apparatus and test and data 
reduction procedures are available in [4]. 

Results and Discussion 
Initially tests were conducted without an entrance crossflow ve

locity component to provide baseline results for comparison with the 
results from tests with crossflow. These baseline tests were conducted 
with the instrumented tubes supplied directly from the upstream 
plenum through an adapter disk machined to accept the inter
changeable plugs used in the primary channel. The axial alignment 
of plenum and tubes established a zero crossflow approach velocity 
to an abrupt, square-edged tube entrance condition. 

V////////M\ n//777mn 
-INSULATION 
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The baseline results can be compared with published values for 
average heat transfer in short tubes [5, 6]. The results summarized 
in [5] a r e described by an Lid enhancement of the Colburn equa
tion: 

Nu = 0.023Pr°-67Rea8[l + W/L)0-7] (1) 

Those of [6] are from 15 to 35 percent higher than (1), with the larger 
differences at the smaller Lid values. The present baseline test results 
are bracketed by the [5, 6] results, agreeing best with those of [6] at 
the low end of the Re range (104) and best with [5] at the high end 
(106). This is true for all three tube diameters used in the present tests; 
and differences in the Nu values obtained with the different diameter 
tubes are within the estimated experimental uncertainty. Estimated 
uncertainties [7] in Re range from ±1.5 to ±2.0 percent, with the 
higher values associated with the smallest tube diameter. For Nu, 
uncertainties range from ±5 to ±7 percent, with the higher values 
associated with lower Re. 

The crossflow testing was conducted with the branch tube Reynolds 
number held nominally constant (±3 percent) at values of 104, 2 X 
104, 5 X 104, and 106. At each of these values the crossflow was sys
tematically increased from its lowest values (with all the channel flow 
directed through the branch tube) through a range of values to an 
upper limit set by the flow supply capacity. This upper limit is de
pendent on tube diameter and Reynolds number. For the 0.64 cm 
tubes, the maximum value of crossflow is approximately 29 and 3 
times the mean axial tube flow at Re = 104 and Re = 105, respectively. 
For the smaller tubes these maximum attainable crossflow ratios (V*) 
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16 

are smaller for the same values of Reynolds numbers because of the 
higher required tube velocities. For the 0.32 cm tubes, the maximum 
values of the ratios are approximately 7 and 1 at the lowest and highest 
Reynolds numbers respectively. Experimental uncertainties for V* 
are estimated to be from ±4 to ±5 percent, with the higher values 
associated with the smallest tube diameter. 

Figure 2 presents Nusselt number results for each of the four values 
of Lid at each of the nominal Reynolds numbers as a function of V*. 
Again, where all three tube sizes were used (LID = 10 and 20) there 
is reasonably good agreement between the results from one size and 
those of another. This should provide some degree of confidence in 
scaling the present results for use with different branch tube sizes. 
The lowest V* value results shown in Fig. 2 correspond to cases where 
all primary channel flow is routed through the branch tube. Nusselt 
numbers for these cases (0.06 < V* < 0.26) agree within experimental 
uncertainties with the corresponding zero crossflow values from the 
baseline tests. 

The experimental results show that there can be a significant effect 
of a crossflow or transverse entrance velocity component on the av
erage heat transfer in short tubes; a situation common in heat ex
change devices where multiple branch cooling passages are supplied 
from a manifold. The heat transfer enhancement increases with in
creasing crossflow-to-tube velocity ratio; the amount depending on 
both Reynolds number and tube length-to-diameter ratio. 
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Double Diffusive Instability in a 
Vertical Layer of a Porous 
Medium 

A. A. Khan1 and A. Zebib1 

Nomenclature 
L = layer thickness 
T = temperature 
AT = temperature difference across the layer 
S = solute concentration 
K = permeability 
t = porosity 
KT - thermal diffusivity 
as = solute diffusivity 
p, pr = density and reference density 
c = specific heat 

1 dpi 
a = coefficient of expansion = — 

pri>T\r 
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The baseline results can be compared with published values for 
average heat transfer in short tubes [5, 6]. The results summarized 
in [5] a r e described by an Lid enhancement of the Colburn equa
tion: 

Nu = 0.023Pr°-67Rea8[l + W/L)0-7] (1) 

Those of [6] are from 15 to 35 percent higher than (1), with the larger 
differences at the smaller Lid values. The present baseline test results 
are bracketed by the [5, 6] results, agreeing best with those of [6] at 
the low end of the Re range (104) and best with [5] at the high end 
(106). This is true for all three tube diameters used in the present tests; 
and differences in the Nu values obtained with the different diameter 
tubes are within the estimated experimental uncertainty. Estimated 
uncertainties [7] in Re range from ±1.5 to ±2.0 percent, with the 
higher values associated with the smallest tube diameter. For Nu, 
uncertainties range from ±5 to ±7 percent, with the higher values 
associated with lower Re. 

The crossflow testing was conducted with the branch tube Reynolds 
number held nominally constant (±3 percent) at values of 104, 2 X 
104, 5 X 104, and 106. At each of these values the crossflow was sys
tematically increased from its lowest values (with all the channel flow 
directed through the branch tube) through a range of values to an 
upper limit set by the flow supply capacity. This upper limit is de
pendent on tube diameter and Reynolds number. For the 0.64 cm 
tubes, the maximum value of crossflow is approximately 29 and 3 
times the mean axial tube flow at Re = 104 and Re = 105, respectively. 
For the smaller tubes these maximum attainable crossflow ratios (V*) 
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are smaller for the same values of Reynolds numbers because of the 
higher required tube velocities. For the 0.32 cm tubes, the maximum 
values of the ratios are approximately 7 and 1 at the lowest and highest 
Reynolds numbers respectively. Experimental uncertainties for V* 
are estimated to be from ±4 to ±5 percent, with the higher values 
associated with the smallest tube diameter. 

Figure 2 presents Nusselt number results for each of the four values 
of Lid at each of the nominal Reynolds numbers as a function of V*. 
Again, where all three tube sizes were used (LID = 10 and 20) there 
is reasonably good agreement between the results from one size and 
those of another. This should provide some degree of confidence in 
scaling the present results for use with different branch tube sizes. 
The lowest V* value results shown in Fig. 2 correspond to cases where 
all primary channel flow is routed through the branch tube. Nusselt 
numbers for these cases (0.06 < V* < 0.26) agree within experimental 
uncertainties with the corresponding zero crossflow values from the 
baseline tests. 

The experimental results show that there can be a significant effect 
of a crossflow or transverse entrance velocity component on the av
erage heat transfer in short tubes; a situation common in heat ex
change devices where multiple branch cooling passages are supplied 
from a manifold. The heat transfer enhancement increases with in
creasing crossflow-to-tube velocity ratio; the amount depending on 
both Reynolds number and tube length-to-diameter ratio. 
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Double Diffusive Instability in a 
Vertical Layer of a Porous 
Medium 

A. A. Khan1 and A. Zebib1 

Nomenclature 
L = layer thickness 
T = temperature 
AT = temperature difference across the layer 
S = solute concentration 
K = permeability 
t = porosity 
KT - thermal diffusivity 
as = solute diffusivity 
p, pr = density and reference density 
c = specific heat 

1 dpi 
a = coefficient of expansion = — 

pri>T\r 
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1 dp\ 
coefficient of expansion = 

PrdSi 

Rs = salinity Rayleigh number 

Ra = thermal Rayleigh number = 
gKaATL 

VK.T 

t = 
r = 
H = 
k = 
P = 
N = 
(71 = 

a = 

streamfunction 
time 
(pc)m/(pc)f 

• KT/KS 

wave number 
H/r 

•H/e 

= growth rate 
rRao\ 

Subscripts 

x = partial derivative with respect to x 
z - partial derivative with respect to z 
m = medium 
/ = fluid 
o = steady-state 
r = reference state 

Superscr ip t 

' = derivative with respect to x 

I n t r o d u c t i o n 
The stability of the steady motion driven by side heating of a stably 

stratified fluid which saturates an infinite vertical slab of a porous 
medium is considered. The steady mean motion is a function of the 
salinity Rayleigh number Rs- When Rs = 0, Gill [1] showed that the 
corresponding equilibrium situation is always stable. For values of 
R3 > 0, double-diffusive instabilities may be excited depending on 
the values of the salinity and thermal Rayleigh numbers. This thermal 
concentration instability was investigated by Gershuni, et al. [2] in 
the limit Rs —* °°. The spontaneous formation of thermohaline con
verting layers within a porous medium is of geophysical interest and 
has been postulated to occur in geothermal areas [3-5]. 

In this paper, we present a linear stability analysis of two-dimen
sional perturbations for values of Rs > 0. A Galerkin method is used 
to solve the resulting eigenvalue problem for the growth rates. The 
parameter values r = 0.62, e - 0.38 and H = 260 are assumed. These 
values correspond to a brine solution saturating a layer filled with glass 
beads. Our results for Rs = 0 and Rs - • °°are in complete agreement 
with those of Gill [1] and Gershuni, et al. [2], We also find that for Rs 

< 7.901 there are no two-dimensional instabilities. The instabilities 
for Rs > 7.901 are found to be all stationary. 

F o r m u l a t i o n 
Consider the physical and coordinate systems shown in Fig. 1. The 

vertical boundaries are isothermal and rigid, and the fluid is initially 
linearly stratified. The nondimensional, Darcy-Boussinesq equations 
are 

*Pxx + i*zz = 

rTt + fzTx - 4>XTZ 

eSt + \pzSx - \pxSz = 

-Tx + Sx 

_ J_ 
Ra 

e 

HRa 

(Txx + Tzz), 

(Sxx + SJZ), (1) 

where length, time, velocity, temperature and salinity concentration 
have been assumed dimensionless with respect to L, Lv/(gKaAT), 
gKaAT/v, AT, and aAT//3, respectively. The boundary conditions 
associated with (1) are 

t = sx = o, * = ±y2> 

Sx 

__L_ 

Sx 

= 0 , T 

xi 

=0, T = 

=0 

T 

AT 

Fig. 1 Physical and coordinate systems 

T = l, * = %• (2) 

For an infinitely long layer, the steady solution to (1) and (2) is given 
by 

To = x + V2, 

Sox = Rs<po, 

^o = — [1 - cos h W c o s hfl,1 ' '2/2]. 
Rs 

where the salinity Rayleigh number Rs is defined by 

HRa 
Rs — -Soz, 

(3) 

(4) 

T = 0, 
• % , 

and Soz is the nondimensional imposed concentration gradient. 
The stability of the steady motion given by (3) to two-dimensional 

perturbations is now considered; let 

\f/ = \poM + 4>(x) exp (ait + ikz), 

T = T0(x) + 6(x) exp (at + ikz), 

S = So(xiz) + a(x) exp (o\t + ikz), (5) 

in (1) and neglect higher order terms in 4>, d, and 2 . The resulting ei
genvalue problem is 

0" - k2<l> = - 0 ' + a' 

<j>" - hH = <r8 + ikRa<t> - ikRa\f/'o6, 

cr" -k2a = Pa a + ikRaN(Sox<l> - i^ 'oD + R,<t>', (6) 

with the boundary conditions 

8 = 4> = <j' = 0atx = ±1/2, W 

The parameters P = H/r and N = H/e were introduced by Gershuni, 
et al. [2] and thus the physical problem is influenced by e, r, and H 
only through the ratios H/r and H/e. 

N u m e r i c a l C a l c u l a t i o n s 
Equations (6) and (7) with \j/'o and Sox given by (3) are solved nu

merically by a Galerkin method. The perturbations 0, 6, and a are 
expanded in complete sets of functions which satisfy the homogeneous 
conditions in (7). Thus, we assume the representations (cf. Hart [6] 
and Paliwal and Chen [7]). 

N 
6 = £ anYn, 

n=i 

N 

4> = E BnYn, 
7 1 = 1 

<y = c0+ £ cnY'n, (8) 
n - l 

where the basis functions Yn (x) are the eigensolutions of 

y;+x2y„ = o, Y„(±%) = O 0) 
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The expansions in (8) are substituted in (6)1 — (6)3 and operated on 

by 

X
l/2 -~l/2 p\l2 s*l/2 

Ymdx, I Ymdx, and I dx, I Y'„ a 
•1/2 J - 1 / 2 J - 1 / 2 J - 1 / 2 

respectively. The first of these operations leads to 

ndx 

(A2
m + fe2) 

, + X2„ 1, 2 , . . . JV, (10) 

where Znm = S-m Y'nYmdx/ S-in Yldx. Thus with bn given in terms 
of on and c„ in (10), together with the last three operations, the orig
inal system (6) is converted to a (27V + 1) X (2iV + 1) matrix eigen
value problem with eigenvalues a. The solution is accomplished by 
a standard library subroutine for complex matrices. The stability 
boundary is determined by computing parameter values for which 
Max(Re(<r)) = 0. Overstability is indicated if the associated Im(a) ^ 
0. The value of N needed for convergence in the cases considered was 
found to be 10. 

Figures 2-4 show the numerical results. The stability boundary for 
the parameter values considered is composed of stationary states. 
When Rs = 0, the basic flow is stable, and remains stable for values 
of Rs < 7.901. There is a minimum value for the imposed concentra
tion gradient which renders the flow unstable, in this case it corre
sponds to Rs = 7.901. This is in qualitative agreement with the be
havior of continuous fluids when transition takes place from shear 
to double-diffusive instabilities at some finite value of Rs > 0 [6, 

7]. 
Figures 2 and 3 show the neutral curves for Rs = 8, 9,10,100 and 

251. These curves have minima for Ra when Rs equals 8, 9 and 10. 
However, for 10 < Rs < 251, the neutral curves become flat as k —• 
0, and no minimum is well defined, although the value i?„c is clearly 
indicated. 

In the limit Rs -+ °°, appropriate for strong stratification, it is seen 
from (3) that i/-0 -* 0 and Sox -*• 1. Thus, the basic state is charac
terized by zero horizontal density gradient and is in a mechanical 
equilibrium (except in boundary layers near the vertical boundaries 
of thickness 0(i?„~1/2) where Sox -> 0). This is the situation consid
ered by Gershumi, et al. [2]. Their results for critical states with <r = 
Oare 

Kc = RS
1/4VTT and Rac = R s

w 
y/8x 

:JV- II 
(ID 

These asymptotic values are shown by the dashed lines in Fig. 4, and 
they are in excellent agreement with the exact solution for Rs > 
1000. 
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Application of the P-l 
Approximation to Radiative 
Heat Transfer in a Nongray 
Medium 

W. W. Yuen1 and D. J. Rasky2 

N o m e n c l a t u r e 
a,„ = abso rp t ion coefficient a t wavenumber w 

Ap = P l a n c k ' s m e a n absorp t ion coefficient 

Aiwii = 0, 1, 2, 3) = expansion coefficients defined by equa t ion (5) 

d = spec t ra l l ine spac ing 

ebw = b l ackbody emissive power 

ebwi = b l ackbody emissive power eva lua ted a t T\ 

ebw2 - b l ackbody emissive power eva lua ted a t Ti 

ebwo = b lackbody emissive power eva lua ted a t z = 0 

4 " o = debw/dz (z = 0) 

ebu = b l ackbody emissive power eva lua ted a t u>i and T\ 

ebii = b l ackbody emissive power eva lua ted a t wi and Ti 

ejoi = b lackbody emissive power eva lua ted a t wt and 2 = 0 

eUJ; = debw/dz (z = 0, w = u),) 

F , ' * ' = in tegra l of Fkw over t h e i t h b a n d 

Fkw — funct ion def ined by equa t ion (8) 

G,-'*' = in tegra l of Gkw over t h e t t h band 

Gi,w = funct ion def ined by equa t ion (9) 

iw = rad ia t ive in tens i ty 

ibw - ebw/ir 

hwi = etioi/ir 

ibwl = 66102/^ 

L = sepa ra t ion be tween two p la tes for t h e one-d imens iona l sys tem 

l^w ~ o.wL 

q = radiative heat flux 
Q = heat generation rate 
S = mean line intensity 
T\ = temperature of the lower boundary 
T2 = temperature of the upper boundary 
2 = coordinate 
7 = line half-width 
V = z/L 

//. = cos0 

w = w a v e n u m b e r 

p = dens i ty of gas 

ipn.w = spher ica l h a r m o n i c n- m o m e n t 

1 In troduc t ion 
Interest in predicting the heat transfer rate through an absorbing 

emitting medium has been increasing as more problems with high 
temperature have arisen. But realistic solutions to these problems, 
even in a very simple geometric system, are difficult to obtain because 
of the frequency and temperature-dependent radiation properties 
of the medium. 

In the present work the P-l approximation method, which has been 
demonstrated [1] to be effective in generating accurate approximate 
solutions to the gray problem, will be generalized for nongray prob
lems. In contrast to most of the existing approaches [2-4], the present 
method has the advantage that all solutions will be formulated in 
terms of the spectral absorption coefficient. The method is thus ap
plicable for all media including those for which correlations of total 
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b a n d absorp tance are no t available. For gases, the presen t technique 

will be demons t r a t ed to be superior. Even for s i tuat ions in which the 

s i m u l t a n e o u s effects of all absorp t ion b a n d s are considered, only 

s imple i t e ra t ions are requ i red for its solut ion. 

2 M a t h e m a t i c a l F o r m u l a t i o n 
T h e m a t h e m a t i c a l d e v e l o p m e n t for t h e P - l app rox ima t ion is well 

known. In essence, t h e t ransfer equat ion and the energy equat ion are 

combined to yield 

d2 
+ dw^Po.w = iawebw 

dz 
+ 3aw\[/iilv = 0 

(1) 

(2) 

where \po,w a n d \j/\iW a re t h e zeroth and first m o m e n t of t h e spectral 

i n t ens i ty funct ion a t w a v e n u m b e r w, aw t h e absorp t ion coefficient, 

ebw t h e b lackbody emission power , and z t h e coordina te . T h e energy 

e q u a t i o n becomes 

dz Jo 
\pilWdw = Q (3) 

with Q being the internal heat generation rate. As in the gray analysis, 
the intensity boundary conditions are replaced by Marshak's 
boundary condition. Only two of such conditions are required for 
the P- l approximation. They are 

Ju,/id/u •• 
Jo 

iwUd/x •• 

1 
~Jbwl 

- 1 
'Ibw2 

L 
at z = 

2 

L 
at 2 = — 

2 
(4) 

where n = cosfl, ibwi = hwiTi), ibw2 = ibw(Ti). In the above equations, 
the two plates are assumed to be at temperature Ti and Ti and located 
at 2 = - L / 2 and z = L/2, respectively. 

Despite their apparent simplicity, equations (1-4) are still difficult 
to solve exactly. A simple approximate solution, however, can be 
generated by assuming that the average intensity function, \po,w is 
given by 

to,w = A0ul + Aiwz + A2wz2 + A3wzs (5) 

Substituting equation (5) into equation (2), a similar polynomial ex
pression for xpiu, can be generated. Utilizing equation (4) and requiring 
that coefficients for the zeroth and first power of z on both sides of 
equation (1) to be equal, solutions for the four expansion coefficients 
can be obtained. Utilizing the above expressions, equations (2) and 
(3) and assuming that Q = constant, the following equations re
sult: 

s: Fiwiebwi + ebwi - 2ebu,o)dw = - 3 Q L (6) 

X G2w(ebwi - ebwi) + G2ul + - Giw\ ebwa^L 
o [ \ 3 

dw = 0 (7) 

where e^o = ebw (z = 0) and ebwom = detw/d2 (z = 0). In the above 
equations, Fkw and Gkw are functions defined as 

6L * 
Fkw 

Gkw - • 

l + Lw + aLw
2/8 

oZL/W 

Lw
3 + 4LW

2+8LW + 32/3 

(8) 

(9) 

with Lw - awL. For a given nongray med ium with a known absorption 

coefficient aw, equa t ion (6) can be readi ly solved i tera t ively to yield 

t h e u n k n o w n cen te rpo in t t e m p e r a t u r e T(z = 0). Equa t ion (7) can be 

similarly solved to genera te dT/dz (2 = 0). These resul ts can be used 

t o d e t e r m i n e t h e u n k n o w n expans ion coefficients a n d subsequently 

the t empera tu re profile and hea t transfer. I t is interesting t o note that 

in t h e l imit of a gray m e d i u m (aw = const .) , solutions to equat ions (6) 

a n d (7) cor respond exact ly to t h e t r ad i t i ona l diffusion approxima

t ion . 
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3 A n a l y t i c a l S o l u t i o n 
Surprisingly, direct information on aw for the different common 

absorbing gases (CO2, H2O, etc.) is scarce. Because of its highly ir
regular and complex behavior, most of the existing spectroscopic data 
on gaseous absorption are presented in terms of the correlation pa
rameters for the wide-band total-absorptance model [5], To generate 
an expression for aw which is needed for the P-1 approximation, the 
present work proposes to utilize these data indirectly. Based on the 
Blsassar "narrow band" expression for aw and evaluating at the center 
of the narrow band, the present work assumes that the absorption 
coefficient is given by 

sinh [27T7/d] pS\ 

d I cosh [2iry/d] - 1 
(10) 

where p is the gas density, S/d the mean-line-intensity-to-spacing 
ratio and y/d is the line-width-to-spacing ratio for the considered 
narrow band. Over a wide band, it can be shown that S/d is a function 
of wave number and y/d a function of temperature and pressure. They 
are tabulated for the various gases in reference [5]. 

Equations (6) and (7) can be further simplified by assuming that 
the blackbody emissive power ebw varies only slowly over the range 
of w at which Fkw and Ghw are significantly different from zero. 
Treating ebw as a constant in the integration, equations (6) and (7) 
become 

£ # ( 1 ) (etii + eb2i - 2em) = -SQL (6a) 
;=i 

G;<2) (ebli - eb2i) + em
mL ($<» + ^ GA = 0 (7a) £ 

;=i 

where the subscript i stands for evaluation at the center (or the head) 
of the ith band u>t and F,- i-h\ G;(*> are integrals of the function Fkw and 
Gkw over the ith band. It is interesting to note that utilizing equation 
(10), Ft<A> and G;(A) can be evaluated in closed-form for all values of 
k. 

Even without explicit numerical computations, a number of in
teresting analytical expressions can be readily generated. For the case 
with equal wall temperature (Ti = T2) and nonzero heat generation 
(Q 9^ 0), assuming that the blackbody emissive power can be ap
proximated by the following linearization 

, [debi\ 
61.+ —="_ em = ebli + l — I (T0 - Ti) 

\dTln 

equation (10a) yields 

-QL 

T0=T1 + -

i-i \dTJn 

In the optically thin limit, equation (21) is reduced to 

QL 
TQ=T1 + -

4 £ rC3{^ 
\dTln 

(14) 

(15) 

(16) 

where T = pi (Ci /C 3 ) sinh (27T7/d)/(cosh (2wy/d) - 1), and Ch Cs 

the wide-band correlation constants tabulated in reference [5]. 
Equation (16) is the correct optically thin limiting expression for To 
as discussed in reference [3]. In the large path-length limit (pL -* 
large), equation (15) is reduced to 

QL 
T 0 = 7 ,

1 + -

6.96 £ H& 
(17) 

Except for a simple numerical factor, equation (23) is again identical 
to the corresponding expression developed in reference [3]. (The 
numerical value 6.96 is replaced by 2ir in that reference.) 

For the case with unequal wall temperatures (T\ 7̂  T2) and zero 
heat generation (Q = 0), the overall heat transfer is the more inter

esting physical quantity. Utilizing equations (6-9) and the definition 
of heat flux, it can be shown that in the large pathlength limit 

q - aTJ - <r7Y - £ (ebli - ebii)(lnr)i (18) 

Since \nr is the large pathlength limit of the wide-band total gas 
absorptance, equation (18) suggests that in that limit the different 
bands absorb independently and their effects add linearly to yield the 
total attenuation. Since the contribution due to the different bands 
can be quite substantial, the above expression also illustrates that 
calculations in which only one absorption band is considered can lead 
to significant error in the heat flux prediction at the large pathlength 
limit. 

4 N u m e r i c a l R e s u l t s and D i s c u s s i o n 
To demonstrate quantitatively the effectiveness and the accuracy 

of the present method, solutions with CO2 as the absorbing medium 
are now generated. Assuming that Q = 0 and the only relevant ab
sorption band is the 4.3 p. band, solution to equations (10a) and (10b) 
yield the following expressions for the heat flux and the temperature 
distribution 

q = cTi* - <7T2
4 - (eblc - eb2c) 

+ [eblc - 6b2c)Gc 

— GCW + -GCW + -GC<» 
32 8 4 

GC<
2> + 4GC

(1> (2) 
24GC(2» + 32GC(1». 

(19) 

ebc(z) - et2c 

ebU ~ 2b2c 
Gc<2>?/ + - G c < 4 y 

G<2> 
16 

GcW(i) - 4TJ3) + 4GC<3>T; G C < V 

4.4pL[8Gc<
2> + 32/3Gc<

1>] 
(20) 

T a b l e 1 Compar i son of t h e d imens ion le s s h e a t flux 
(<j/ffT2

4) for t w o typ ica l c a s e s obta ined from the 
p r e s e n t Pi a p p r o x i m a t i o n and those obta ined from 

o ther t e c h n i q u e s 
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band absorption 
P i approximation 
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In the above expression, in = z/L; the subscript c implies properties 
evaluated at the head of the 4.3 ix band and Ap = 1/L J" A, o,wh dw is 
the Planck mean absorption coefficient. 

Assuming that T\ = 1500 K and Ti = 400 K, and evaluating awq+ 

the average temperature, the heat flux calculated from equation (19) 
for two specific cases and those obtained from other techniques [2] 
are compared in Table 1. The agreement is excellent. The accuracy 
of the temperature profile result is illustrated in Fig. 1. It is important 
to note that the present mathematical development represents at least 
a ten-fold reduction in complexity comparing to all of the specific 
existing techniques. 

Acknowledgment 
This work is based upon work supported by the National Science 

The Effects of Nonuniform Heat 
Transfer from an Annular Fin of 
Triangular Profile 

Introduction 
Finned surfaces are presently designed on the basis that the heat 
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Analysis 
In the following analysis it is assumed that the thermal conductivity 

of the fin material, k, is constant and the heat transfer coefficient, H, 
varies linearly from hb at the fin-base to ht at the fin-tip, i.e., 

H(r) = -^-[l-(l-e)^A (1) 
(1 + t) \ rt - rb) 

where h is the average value of H and c is the ratio of the heat transfer 
coefficient at the fin-base to that at the fin-tip. 

For steady-state, one-dimensional conductive heat flow, an energy 
balance over an element of the fin, gives 

d I d A H 
- 0 - 3 - 0 - 7 r0 = <> (2> 
dr \ dr I k cos a 

where the fin profile is described by 

t 
y(r) = - ( / • ( - r) 

The inclusion of the exact representation for the incremental sur
face area, (2irr dr/cos a), does not complicate the solution procedure, 
and has the advantage that the solution will be valid, even for small 
fin length to fin-base thickness ratios. This has particular significance 
as Lau and Tan [8] have recently shown, for a variety of fins, that the 
applicability of the one-dimensional approximation does not require 
the fin length to be large in comparison to the relevant transverse 
dimension. 

The temperature distribution, and hence the heat transfer rate of 
the fin, are determined by solving equation (2) subject to the condi
tions 

i at r = rb, 6 = 1 (3) 

Fig. 1 The annular fin of triangular profile 
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Analysis 
In the following analysis it is assumed that the thermal conductivity 

of the fin material, k, is constant and the heat transfer coefficient, H, 
varies linearly from hb at the fin-base to ht at the fin-tip, i.e., 

H(r) = -^-[l-(l-e)^A (1) 
(1 + t) \ rt - rb) 

where h is the average value of H and c is the ratio of the heat transfer 
coefficient at the fin-base to that at the fin-tip. 

For steady-state, one-dimensional conductive heat flow, an energy 
balance over an element of the fin, gives 
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where the fin profile is described by 
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y(r) = - ( / • ( - r) 

The inclusion of the exact representation for the incremental sur
face area, (2irr dr/cos a), does not complicate the solution procedure, 
and has the advantage that the solution will be valid, even for small 
fin length to fin-base thickness ratios. This has particular significance 
as Lau and Tan [8] have recently shown, for a variety of fins, that the 
applicability of the one-dimensional approximation does not require 
the fin length to be large in comparison to the relevant transverse 
dimension. 

The temperature distribution, and hence the heat transfer rate of 
the fin, are determined by solving equation (2) subject to the condi
tions 

i at r = rb, 6 = 1 (3) 
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ii at r = rt, 6 is finite. (4) 

Using the dimensionless distance from the fin-tip as the new in
dependent variable, and introducing the dimensionless quantities M, 
JV, R and £, equation (2) becomes 

X(R-x) — +(R 
d6 

•2x) MN(1 - $x)(R - x)6 = 0 (5) 
ax 

Applying the method of Frobenius, and following the solution 
procedure described by Smith and Sucec [2], the temperature dis
tribution is found to be given by 

fl(r)-

E On 
n = 0 

rt~r 

rt - m 
(6) 

E an 
n = 0 

where 

ai = MN 

(2 + NMR)ax - MN(\ + ?ft)a0 
02 = " 

On : 

4ft 

(n(n - 1) + MNR)an-! - MN(1 + gfl)an-2 + MN£an-

(7) 

n2R 
n>3 

The solution for constant heat transfer coefficient, as derived by 
Smith and Sucec [2], is recovered by substituting e = 1 (i.e., hi, = ht) 
into the above solution. 

The rate at which one fin dissipates heat is given by 

, E nan 
fit n=\ . „ „ 

«j=4Trrj — (Tb-T„). 
Li CD 

E an 
n = 0 

(8) 

and the fin efficiency, which is defined as the ratio of the heat dissi
pated by fin to that which would be dissipated if the entire fin surface 
were at base temperature, is given by 

E rian / E "n 
B=l / n = 0 / 

v=-
MN\R--{1 + £ft) + - £| / (ft - 1) 

(9) 

It can readily be shown that rj is a function of the three independent 
parameters hblht, rt/ri, and L/£(Bi/cos a)112. 

Resul t s and C o n c l u s i o n s 
Although experimental investigations of fin arrays fail to agree on 

the form of the variation of the heat transfer coefficient, they agree 
that the minimum value of the heat transfer coefficient occurs at the 
fin-base. Therefore, the possible values that the parameters t (= 
hblht) can realistically take lie between zero and unity. The fin ef
ficiencies for the two extreme cases e = 0 and e = 1 are graphically 
presented in Fig. 2. The fin efficiencies for values of c between zero 
and unity lie between the respective curves, e.g. as illustrated by the 
t = 0.4 curves in Fig. 2. 

It is apparent from these results that for a given value of the average 
heat transfer coefficient, the maximum fin efficiency is given by e = 
1 and the minimum by e = 0. Since e = 1 corresponds to the case of 
constant heat transfer coefficient it may be deduced that linear 
variation of the heat transfer coefficient reduces the fin efficiency; 

e 0. 

s. 
o 
«*-
«*~ 
* 0 . 
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u-

H-
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41 
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V — - £ - -4 
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t V cos cos a 

Fig. 2 Efficiency of the annular fin of triangular profile 

within the practical range of values of the parameter M, the maximum 
reduction in the fin efficiency is of the order of 30 per cent. However, 
in practice, reductions in the fin efficiency are unlikely to be so pro
nounced, as experimental results indicate that the heat transfer 
coefficient at the fin-base is nonzero, i.e., e ^ 0. 

Yudin and Tokhtarova [6] investigated the effects of heat transfer 
nonuniformity from an annular rectangular fin, and on the basis of 
a combined analytic and experimental study derived the relation 

VH Nonuniform •• ( l . O - 0 ; ,058 - B i 1 / 2 ?J/f Constant (10) 

The fin efficiency of the triangular annular fin, equation (9), agrees 
to within 3 per cent of Yudin and Tokhtarova's solution when t = 0.4. 
The slight discrepancy may be attributed to the difference in fin 
profiles. It is therefore suggested that the e = 0.4 curves in Fig. 2 be 
employed for the design of annular triangular fins. 

Thus, it is unnecessary to implement higher order variations of the 
heat transfer coefficient, as results consistent with experimental in
vestigations can be obtained using the linear variation. 

A c k n o w l e d g m e n t 
The financial support given to M. Manzoor by the Science Research 

Council is gratefully acknowledged. 

R e f e r e n c e s 
1 Gardner, K. A., "Efficiency of Extended Surface," Trans. ASME, Vol. 

67, 1945, pp. 621-631. 
2 Smith, P. J. and Sucec, J., "Efficiency of Circular Fin of Triangular 

Profile," ASME JOURNAL OP HEAT TRANSFER, Vol. 91,1969, pp. 181-182. 
3 Kern, D. Q., and Kraus, A. D., Extended Surface Heat Transfer, 

McGraw-Hill, New York, 1972. 
4 Wong, P. W., "Mass and Heat Transfer from Circular Finned Cylinders," 

Journal Institution of Heating and Ventilating Engineers, 1966, pp. 1-23. 
5 Stachiewicz, J. W., "Effect of Variation of Local Film Coefficient on Fin 

Performance," ASME JOURNAL OP HEAT TRANSFER, Vol. 91, 1969, pp. 
21-26. 

6 Yudin, V. F., and Tokhtorova, L. C, "Investigation of the Correction 
Factor \p for the Theoretical Effectiveness of a Round Fin," Thermal Engi
neering, 1973, pp. 66-68. 

7 Han, L. S., and Lefkowitz, S. G., ASME Paper No. 60-WA-41,1960. 
8 Lau, W. and Tan, C. W., "Errors in One-Dimensional Heat Transfer 

Analysis," ASME JOURNAL OF HEAT TRANSFER, Vol. 95, 1973, pp. 549-
551. 

Journal of Heat Transfer FEBRUARY 1981, VOL. 103 / 185 

Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Tube Wall Temperatures of an 
Eccentrically Located 
Horizontal Tube within a 
Narrow Annulus with Tube 
Contact 

R. W. Alperi1 

I n t r o d u c t i o n 
A previous article [1] indicated the analytical solution for an ec

centrically located, horizontal tube within another cylinder which 
formed a narrow annulus. The tube could be heated using either an 
electrical power source or a hot water source. It was postulated that 
it could be possible that the upper portion of the eccentric annulus 
(postulated to have the smallest clearance) could become vapor 
blanketed (dryout) while saturated boiling occurred over the re
mainder of the annular region. The analytical tube wall temperature 
distribution was the subject of that paper. However, as an extreme 
case of eccentricity, the tube could be located against the wall of the 
cylinder which encloses the tube (metal-to-metal contact). In that 
case, the boundary conditions and resulting solution vary and are the 
subject of this Technical Note. 

Analysis 
Under the conditions proposed above, the upper region would have 

metal-to-metal contact and dependent on the contact resistance (due 
to applied force and foreign material deposits) could have a high or 
low overall resistance to heat transfer. The narrow annular region on 
either side of the metal-to-metal contact region could have a small 
heat transfer coefficient (/12) due to being steam blanketed while the 
remainder of the annular region has local boiling and a high heat 
transfer coefficient (h{). Two modes of heating the central tube are 
considered, electrical heating and hot water heating. For the case 
where the tube is heated by an electrical heater, the inside tube wall 
is assumed to have a constant heat flux as the boundary condition 
while the inside wall temperature is assumed to be constant when the 
tube is heated by a hot water energy source. Axial conduction effects 
are neglected in this analysis. 

The governing equation for the steady-state temperature distri
bution in a tube which has a variable circumferential heat transfer 
coefficient along the outer radius is 

Hot Water Heated 
r = Ri, t = tw = Constant 

d2t l d t 1 d2t 

dr2 r dr r2d^2 0 (1) 

The boundary conditions for the two cases considered here are: 
Electrically Heated 

@ r = Rt, -K-
i t 
— = q" = Constant 

dt 
@r = R0, - 0 3 <V <<t>3,-K— = q3 

dr 

03 < * < 02 

- 0 2 ^ * ^ - 0 3 

02 < * < IT 

- 7T < * < - 02 

where 93 is the heat transfer in 

dt 
-K — =h2(t-U) 

dr 

dt 
-K— = / , ! ( * - * - ) 

dr 

the contact material. 

(2) 
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@ r = R0 • Same as for 
electrically 
heated case 

(3) 

The general solution for each case can be written as 

t = H0 + H1 £nr + (H2 £nr + H3)V 

+ £ (Amrm + Bmr~m) cos m^f 

+ T. (Cmrm + Dmr-<") sin m<H (4) 
m = l 

Method of Solution 
Initially, the inner boundary condition is used in the assumed 

temperature solution. Then the heat flux around the periphery of the 
tube is expanded as a Fourier series and the Fourier coefficients are 
evaluated. In the heat flux expressions, the assumed temperature is 
used in the evaluations. In particular, the conductive heat transfer 
in the contact region is replaced by an equivalent heat transfer term 
which uses the concept that the heat transfer at the tube surface (r 
= i?o) is equal to the local heat transfer by conduction in the contact 
material (93 = -K 3 /d t /d r ) . In general, the heat transfer in the contact 
material would need to be solved to obtain the temperature distri
bution in the contact material. However, an analytical solution can 
be obtained by assuming the contact material has the same thermal 
conductivity as the tube material (K3 = K) and the temperature 
profile at the tube surface is the same as is in the contact material at 
their point of contact. This assumption has been verified by inspection 
of temperature profiles obtained from some limited experimental data 
and numerical solutions of similar configurations. Once the heat flux 
distribution from the wall is obtained as a Fourier series, this can be 
set equal to the actual heat flux in the tube wall at r = fl0 and by 
comparing the coefficients of the terms, the table of coefficients is 
formed. It should be noted that in this way, only the thermal con
ductivity (K3) of the contact material appears in the table of coeffi
cients and represents the influence of the contact material since the 
assumed temperature distribution was utilized in the contact material 
heat transfer term. 

C o n s t a n t H e a t F l u x 
Evaluating the above expression with the constant heat flux 

boundary condition for the electrically heated tube case at the inner 
boundary results in expressions for Hi and Am in terms of Bm. Hence, 
the expression for temperature becomes: 

t = H0--—'-enr+ £ Bm(rmRr2m + r~m) cos m * (5) 

The above expression was evaluated at the outer boundary condition 
where the product of h(t — ta) was expanded in terms of a Fourier 
series for the three different regions assumed in this analysis and the 
coefficients of the like terms are equated to each other. The resulting 
coefficients are summarized in Table 1. As can be seen, there are m 
= n equations that can be solved uniquely for the individual coeffi
cients utilizing the constant term also shown in Table 1. 

In Table 1, the following definitions are utilized: 

ao = H0- t„, a0 = 
~q"Ri 

KR0 

(6) <*m _ R™R7 m + i?om 

«ra = m(flr1flr2m-flom-1) 
The final solution for temperature can then be written as 

a/fR- r " 
t = a0--—

tln — + £ Bm(rmRT2m + r~m) cos mV + t„ (7) 
K RQ m=l 

186 / VOL. 103, FEBRUARY 1981 Transactions of the ASME 
Copyright © 1981 by ASME

  Downloaded 20 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Summary of solution coefficients, constant heat flux 
'c 

- ± { (h i - h i i * i - h i r 

Z[h,-hj) SIN + t 

Zih i -h j ) SIN 2 ^ 

ahj_ sin t » a 

Zh t SINmtJ, 

Bi 

- i ( ( h , - h , l . , I I N * , 

• I K , . ' , , !>,.,> ! ! » • , } 

i { ,h | .k ! l„,( i ! i | l i . , ,) 

.n,., .K,.| I(-5!H4I.#1) 

x{Ih,_h,,.,(£Si^llL. 

^ * ) } 

a, 

if,. h , *!N 2fc 

• IK j a j * n fat) j > 

1 f.L ._ • /SIN M i \ 

|I!I 

• I 

- i{ , . , - .„. , i^ 

±{,hl.»„.,(i«|t..„.„) 

. (» , . , . K . - i l f 5 ^ •>'•••)} 

e . . . . 

•....=**} 

T { , . . . v . . ( - - t . . -» tL ) 

" B„ 

«w^(%«.=b*)} 

.,„,.„.«„'„ ('"";;"f'.s'"'n"'"'*'| 
' • - = ^ s i - — 

CONSTANT TMM 

'"=; • « • . ' . • . 

* < - * 

.*<-?, 

^ S N ^ , 

Table 2 Summary of solution coefficients, constant wall temperature 
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Constant Wall Temperature 
Evaluating the general solution for temperature (3) similarly for 

a constant wall temperature results in the following expression for 
temperature 

t = t„ + 70 + E Bm(rmRjim + r~m) cos mtf (8) 

where the coefficients of Bm and 70 are summarized in Table 2. The 
following definitions are utilized in Table 2: 

ym = Rom-RiimR% 

Ro 
7o = tw - £„ + H1 In 

Ri 
(9) 

7 o : - H i 

Ro 

ym =-m(Rom-1 + RT^Rr1) 

It should be noted that H0 and Hx are arbitrary Fourier coefficients 
and can be obtained from the terms used in their definitions; however, 
they are not required in the final temperature solution since the a0, 
To, and y'0 terms are found directly from the table. 

Results 
The above temperature solutions were used to evaluate the tube 

Wall temperatures for an arbitrary-sized region of metal-to-metal 

contact (03 = 9 deg for the constant heat flux case and 03 = 5 deg for 
the constant wall temperature case) and varying degrees of vapor 
blanketing that might occur within the narrow annulus crevice region. 
This was done by varying the vapor blanketed angle (<fe) from the 
metal-to-metal contact region to w radians (no vapor blanketing to 
being all vapor blanketed). Values of hi = 17,038.2 W/M2oC and h2 

= 567.9 W/M2oC were used for these calculations. The thermal con
ductivity utilized in these calculations for both the tube and the 
metal-to-metal contact region was 17.3 W/M °C. This implies good 
tube to cylinder support metal contact; hence, good thermal heat 
transfer occurs in that region. A low value of the thermal conductivity 
in the metal-to-metal contact region (cfe) would indicate high contact 
resistance and poor thermal heat transfer. The tube has an outside 
radius of 6.35 mm and an inside radius of 5 mm which corresponds 
to the Shippingport PWR 1A and ID steam generator tube size. 
Typical cases of an electrically heated tube are shown in Fig. 1 and 
for water heated tubes in Fig. 2. As can be seen, the temperature 
variations are significant between the areas of vapor blanketing and 
the region of local boiling. In the electrically heated tube case, the tube 
wall temperatures in the region of the metal-to-metal contact shows 
only a slight decrease in temperature while the water-heated tube, 
since it does not have the power input potential available as does the 
electrically heated case (constant heat flux), shows a significant 
temperature decrease due to the assumed good heat conduction path. 
If the metal-to-metal contact region is assumed to have a high contact 
resistance (low thermal conductivity), then the tube wall temperatures 
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Fig. 1 Circumferential variation of wall temperature (constant heat flux) 

become very high in that region for the electrically heated tube case 
due to the constant heat flux assumption. However, for the water 
heated case, the temperature rise is limited to that available to it, i.e., 
the inner fluid temperature. It is significant to note that the results 
indicate that the wall temperatures vary significantly around the 
periphery and interpretation of their meaning does depend on un
derstanding the position of the tube and the physical nature of any 
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Fig. 2 Circumferential variation of wall temperature (constant wall tem
perature) 

contact before one can make a judgement on the external heat transfer 
conditions. 
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